Paper
24 July 2002 Fluorinated dissolution inhibitors for 157-nm lithography
Author Affiliations +
Abstract
Fluorinated dissolution inhibitors (DIs) for 157 nm lithography were designed and synthesized as part of an ongoing study on the structure/property relationships of photoresist additives. The problem of volatilization of small DI candidates was observed from matrices such as poly(methyl methacrylate) (PMMA) and poly(hexafluorohydroxy-isopropyl styrene) (PHFHIPS) during post-apply bake cycles using Fourier Transform Infrared Spectroscopy (FT-IR). To avoid this problem, low volatility fluorinated inhibitors were designed and synthesized. Three fluorinated DIs, perfluorosuberic acid bis-(2,2,2,-trifluoro-1-phenyl-1-trifluoromethyl-ethyl) ester (PFSE1), perfluorosuberic acid bis-[1-(4-trifluoromethyl-phenyl)-ethyl] ester (PFSE2) and a fluorinated phenylmethanediol diester (FPMD1), largely remained in a PHFHIPS film during the post-apply bake. The dissolution behavior of the two fluorinated diesters was studied and found to slow down the dissolution rate of PHFHIPS with inhibition factors of 1.9 and 1.6, respectively. The absorbance of PHFHIPS films containing 10 wt% of the diester inhibitors is 3.6 AU/micron compared with an absorbance of 3.3 AU/micron for the polymer itself. The absorbance of 10% FPMD1 in PHFHIPS was measured as 3.5 AU/micron compared with an absorbance of 3.4 AU/micron for the polymer itself. Thus, the non-volatility and transparency of the fluorinated inhibitors at 157 nm as well as their ability to reduce the development rate of fluorinated polymers make them suitable for use in a 157 nm resist system.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Alyssandrea H. Hamad, Young C. Bae, Xiang-Qian Liu, Christopher Kemper Ober, Francis M. Houlihan, Gary Dabbagh, and Anthony E. Novembre "Fluorinated dissolution inhibitors for 157-nm lithography", Proc. SPIE 4690, Advances in Resist Technology and Processing XIX, (24 July 2002); https://doi.org/10.1117/12.474245
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications and 2 patents.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Polymers

Absorbance

FT-IR spectroscopy

Photoresist materials

Lithography

Polymethylmethacrylate

Polymer thin films

Back to Top