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Abstract. Multi-modal pedestrian detection, which integrates visible and thermal sensors, has
been developed to overcome many limitations of visible-modal pedestrian detection, such as
poor illumination, cluttered background, and occlusion. By adopting the combination of multiple
modalities, we can efficiently detect pedestrians even with poor visibility. Nevertheless, the criti-
cal assumption of multi-modal pedestrian detection is that multi-modal images are perfectly
aligned. In general, however, this assumption often becomes invalid in real-world situations.
Viewpoints of the different modal sensors are usually different. Then, the positions of pedestrians
on the different modal images have disparities. We proposed a multi-modal faster-RCNN spe-
cifically designed to handle misalignment between two modalities. The faster-RCNN consists of
a region proposal network (RPN) and a detector. We introduce position regressors for both
modalities in the RPN and the detector. Intersection over union (IoU) is one of the useful metrics
for object detection but is defined only for a single-modal image. We extend it into multi-modal
IoU to evaluate the preciseness of both modalities. Our experimental results with the proposed
evaluation metrics demonstrate that the proposed method has comparable performance with
state-of-the-art methods and outperforms them for data with significant misalignment. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JEI.32.1.013025]
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1 Introduction

Pedestrian detection is one of the active research topics in computer vision field, with several
crucial applications, such as autonomous driving1 and video surveillance systems.2 Only visible
images (e.g., RGB images) were used in this task. Pedestrian detections with only visible images
have several issues. Detection accuracy is significantly degraded under poor lighting
conditions.3–7 To overcome those issues, various approaches have been proposed to combine
multiple modalities (e.g., visible and far-infrared)8,9 and utilize the highly apparent regions
of these modalities together. Those methods simply combine features of both modalities directly,
namely, typical two-stream faster region-based convolutional neural network (R-CNN).10–13

The fundamental assumption for this two-stream approach is that alignment between two modal-
ities is perfect. In general, however, this assumption often breaks down due to lack of time syn-
chronization, inaccurate calibration, or the effects of disparity for stereo.14,15 For instance,
MSDS-RCNN,10 which combines detection and semantic segmentation tasks to optimize the
model; however, without any consideration about misalignment, is very sensitive to misalign-
ment and can only precisely locate pedestrians in visible modality, as shown in Fig. 1(a), their
detection bounding boxes are only for visible modality.

Recently, several methods have been proposed to address the misalignment problem. For
example, aligned region-convolutional neural network (AR-CNN)16 proposed incorporating
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an alignment module inside the faster-RCNN. MBNet17 proposed an illumination-aware feature
alignment module to adaptively align features between two modalities. These explicitly designed
methods have improved performance and robustness against misalignment. Still, to the best of
our knowledge, existing methods that consider misalignment only output one coordinate for each
object to represent its position in both modalities, completely neglecting that each object can
have different positions in different modalities due to misalignment. As shown in Fig. 1(b),
despite the prediction of shift distances of objects between modalities, AR-CNN16 only detects
pedestrians in thermal modality (their implementation only produces bounding boxes for thermal
modality). Even though detection bounding boxes of MSDS-RCNN10 can accurately locate
objects in visible modality, and the same goes for AR-CNN in thermal modality, those bounding
boxes are far off from their corresponding objects in another modality due to the large disparity
between them. For this reason, when a significant misalignment is present, the existing methods
can not locate each object in both modalities, forcing us to utilize only their reliable modalities
and ignore the others. In summary, multi-modal pedestrian detection with large misalignment
still has ongoing problems; one of them is the ability to accurately locate objects for both modal-
ities amid large misalignment.

To tackle the problems mentioned above, we propose a multi-modal faster-RCNN that is
robust against misalignment. We use several novel strategies for the proposed multi-modal detec-
tion, including (1) modal-wise position regressor, (2) multi-modal mini-batch sampling, and
(3) multi-modal non-maximum suppression (NMS). The proposed method detects each object
as a pair of bounding boxes with different coordinates in each modality, as illustrated in Fig. 1(c).
It is noteworthy that despite the differences in the position of detection bounding boxes between
modalities, all bounding boxes have paired relations between modalities; each pair indicates the
same object in both modalities. Consequently, the proposed method can accurately pinpoint all
objects in both modalities and match them regardless of displacement caused by misalignment.
Figure 2 shows the different faster R-CNN-based approaches to multi-modal pedestrian detec-
tions. As shown in Fig. 2(a), a typical two-stream faster R-CNN fuses features from both modal-
ities directly without handling the disparity between each object. They can only output detection
bounding boxes for either visible or thermal modality. Explicitly addressing the misalignment

Fig. 1 Visualization examples of ground truth annotations by16 (boxes in green), detection results
(boxes in red), and overlap area between them, measured by mean visible IoU (mIoUV) and mean
thermal IoU (mIoUT) of MSDS-RCNN,10 AR-CNN,16 and the proposed method. Image patches are
cropped from visible-thermal image pairs in the same position from KAISTmultispectral pedestrian
detection dataset8 with large misalignment. (a) MSDS-RCNN;10 (b) AR-CNN;16 and (c) proposed
method.
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problem, AR-CNN integrates region feature alignment to align each visible region with its
counterpart thermal region before the detection network. Still, their method only outputs
detection bounding boxes according to the position of objects in thermal modality alone, as
shown in Fig. 2(b). Our proposed method, on the contrary, installed with a dual-regressor for
both region proposal network (RPN) and detector and newly-introduced multi-modal NMS, can
output pairs of bounding boxes, which accurately locate objects in both modalities, as shown
in Fig. 2(c).

We also introduce new evaluation metrics to analyze the performance of multi-modal pedes-
trian detection networks against misalignment based on the precision of detection bounding
boxes in both modalities, namely, multi-modal IoU (IoUM) and multi-modal log-average miss
rate (MRM). Our experiments show that the proposed method’s performance significantly out-
performs state-of-the-art methods for large misalignment data.

Overall, the main contributions of this article are as follows: (1) we introduce a new problem
for multi-modal pedestrian detection with large misalignment to precisely locate objects in both
modalities and correctly match them.We also introduce new evaluation metrics, IoUM andMRM,
to evaluate the performance on these tasks; (2) we introduce new training strategies for our multi-
modal pedestrian detection network to deal with misalignment: modal-wise regression, multi-
modal mini-batch sampling, and multi-modal NMS. Our strategies are applicable to other multi-
modal detection tasks. (3) We experiment on KAIST8 multispectral pedestrian dataset with our
experimental setting and evaluation metric to productively analyze the performance of multi-
modal detectors against misalignment. Our proposed method achieves comparable performance
with state-of-the-art methods and outperforms them when misalignment is large.

Fig. 2 Comparison of multi-modal pedestrian detection frameworks based on faster R-CNN.
(a) Typical two-stream faster R-CNN; (b) AR-CNN;16 and (c) proposed method.
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This article is an extended version of our previous conference paper,18 mainly in the follow-
ing points: (1) we improve the performance of our method with a new implementation for NMS
and parameters fine-tuning; (2) additional explanation and analysis of misalignment problem and
proposed model are portrayed in detail; and (3) more experiments are conducted to demonstrate
the advantage of our methods compared to state-of-the-art (SOTA) methods and ablation study to
carefully inspect the impact of each component of the proposed model.

2 Related Work

In this section, related works are reviewed. First, we review single-modal pedestrian detection,
i.e., pedestrian detection that only uses visible images. Second, we review multi-modal pedes-
trian detection, i.e., pedestrian detection that uses both visible and thermal images, dividing into
naive feature fusion and adaptive feature fusion.

2.1 Single-Modal Pedestrian Detection

Pedestrian detection has improved dramatically since the traditional hand-crafted features-based
methods, such as histogram of oriented gradient19 and integral channel features (ICF),20 which
were made obsolete by superior deep-learning-based methods.3–7 The most notable pedestrian
dataset of visible images is the Caltech Pedestrian Dataset.21 However, limited to only informa-
tion from the visible channel, many pedestrians are still very difficult to recognize, even with
human perception. The detection performance was degraded by many challenges,4 such as low
image resolution, occlusion, adverse illumination, cluttered background, and inconsistent pattern
of humans.

2.2 Multi-Modal Pedestrian Detection

2.2.1 Naive feature fusion

KAIST multispectral pedestrian detection (KAIST) dataset8 has been widely used in the research
field of multi-modal pedestrian detection, making it progress steadily. Despite non-CNN-based
approaches such as aggregate channel features22 in the early days, the CNN-based approach is
mainstream in this field currently.10–13,23–29 The main challenge in the early days was how to
combine and make use of information from both modalities.30–33 Most existing methods assume
that visible-thermal image pairs are geometrically aligned. Those methods fuse both modalities’
features directly in corresponding pixel positions, as shown in Fig. 2(a). Although many
geometric calibration and image alignment methods for multi-modal cameras have been pro-
posed,34–37 accurate and dense alignment for each pixel is still an open problem. As a result,
their detectors suffer dramatically worse performance in poorly ARs.

2.2.2 Adaptive feature fusion

AR-CNN16 is the first work that immensely tackles the misalignment issue in multi-modal CNN-
based pedestrian detection. They proposed AR-CNN, considering the disparity between multi-
modalities. They also provided KAIST paired annotation, which includes annotated bounding
boxes for each modality. Their method predicts the shift distance between modalities for each
region of interest (RoI), relocates the visible region into the thermal area, and then aligns them
together, as shown in Fig. 2(b). They successfully improved performance from previous methods
that do not consider misalignment, revealing the influence of misalignment. MBNet17 also
proposes a method that takes modality imbalance into account. However, those methods assume
that the misalignment is weak, which leads to inaccurate detection of bounding boxes in one
(or both) modality when the misalignment is significant. To tackle this problem, we introduce the
modal-wise regressor to detect each object in a pair of bounding boxes with different coordinates
in each modality, as shown in Fig. 2(c), resulting in more accurate object localization in both
modalities.
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2.3 Evaluation Metric for Pedestrian Detection

In object detection, there are several evaluation metrics. The most fundamental metric is inter-
section over union (IoU), which measures the overlap between two bounding boxes. We pre-
define an IoU threshold (usually 0.5) between the predicted bounding box and ground truth
bounding box to classify whether that bounding box is true positive or false positive or between
each bounding box to discard the low score one with NMS. One of the most common metrics to
measure object detection accuracy is average precision (AP). For PASCALVOC dataset,38 AP is
the average precision for recall over 0 to 1 with IoU threshold of 0.5, which then average over all
object categories. Meanwhile, for COCO dataset,39 mAP (or just AP) is the average AP for IoU
threshold over 0.5 to 0.95 with a step size of 0.05 to measure the precision of detection with
varying restrictions, not just IoU threshold of 0.5. Despite that, MR has been used as the primary
evaluation metric for pedestrian detection since we only focus on one class in pedestrian detec-
tion, pedestrian. Moreover, pedestrian detection is closely related to real-life applications such as
autonomous driving cars, any false negative in detection could cause a severe accident. At first,
the Caltech Pedestrian Dataset21 plotted MR over false positives per image (FPPI) in log-log
scale and used MR at 100 FPPI as a common reference point to compare performances. KAIST
dataset,8 however, stepped up to log-average MR over 10−2 to 100 (MR) following the sugges-
tion by Dollar et al.40 Since then, MR has been the primary evaluation metric for multi-modal
pedestrian detection.

3 Proposed Method

This section explains our proposed method and evaluation metrics in detail. First, we describe
each evaluation metric we propose for multi-modal pedestrian detection. Second, we describe
our proposed multi-modal faster R-CNN network designed for misalignment problems.

3.1 Proposed Evaluation Metrics

We propose evaluation metrics that we use in our training and performance testing. First, multi-
modal IoU (IoUM) is introduced. Second, multi-modal MR (MRM) is introduced.

3.1.1 Multi-modal IoU

Traditionally, we use IoU in object detection tasks to evaluate the overlap between ground truth
and detection bounding boxes. The IoU is defined as

EQ-TARGET;temp:intralink-;e001;116;298IoU ¼ GT ∩ DT

GT ∪ DT
; (1)

where GT and DT denote ground truth and detection bounding boxes, respectively. GT ∩ DT

represents the area of intersection of ground truth and detection bounding boxes, GT ∪ DT rep-
resents the area of union of ground truth and detection bounding boxes. However, when there is a
misalignment between modalities, the coordinates of each object in both modalities are not the
same. If we are only concerned about the precision of one modality, another modality will have
poor precision. To measure the ability to handle both modalities, especially when the level of
misalignment is high, we introduce a new evaluation metric, which we call “multi-modal IoU
(IoUM)” defined as

EQ-TARGET;temp:intralink-;e002;116;160IoUM ¼ ðGTV ∩ DTVÞ þ ðGTT ∩ DTTÞ
ðGTV ∪ DTVÞ þ ðGTT ∪ DTTÞ ; (2)

where GTV and GTT denote paired ground-truth bounding boxes referring to the same object of
visible and thermal modalities, respectively. DTV and DTT denote paired detection bounding
boxes referring to the same object from visible and thermal modality, respectively. IoUM can
be used to determine the precision of detection bounding boxes in both modalities.
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3.1.2 Multi-modal MR

Following the traditional evaluation of object detection, we categorize detection bounding boxes
and ground-truth bounding boxes into true positives, false positives, and false negatives to evalu-
ate detection results. The traditional way to do that is the greedy matching algorithm. Matched
detection bounding boxes will become true positives, unmatched detection bounding boxes will
become false positives, and unmatched ground truth bounding boxes will become false nega-
tives. In pedestrian detection, we value false negatives the most since miss detection could be
crucial in real-life applications. The lower the false negatives, the better. In multi-modal pedes-
trian detection, performance is traditionally measured by log-average MR suggested by Dollar
et al.40 MR is defined by geometrical mean of MRs at specific FPPI evenly divided in log space,
which can be formulated as

EQ-TARGET;temp:intralink-;e003;116;597Log − Average Miss Rate ðMRÞ ¼
�Yn

i¼1

ai

�1
n ¼ exp

�
1

n

Xn
i¼1

ln ai

�
; (3)

where a1; a2; : : : ; an are MRs at n different FPPI evenly spaced in log space. MR is the pro-
portion of false negative results to total objects, and FPPI is the proportion of false positive
results to total images. Traditionally, we use nine MRs at evenly spaced FPPI over
½10−2; 100� in log space ð10−2; 10−1.75; 10−1.5; : : : ; 100Þ to calculate MR, at which we call
MR−2. The lower the MR, the better.

The original KAIST dataset only had a single common annotation for each object in both
modalities, despite misalignment between them. Their annotation also has many errors, such as
imprecise localization, misclassification, and misARs.10 Aware of the issue, many researchers
relabeled KAIST annotation to solve the above errors. Liu et al.11 provided improved annotation
for the testing, which has become the standard annotation for performance evaluation. Li et al.10

provided sanitized annotation for the training and demonstrated the effects caused by different
kinds of annotation errors. Zhang et al.16,41 provided revolutionary KAIST-paired annotation,
which carefully localizes pedestrians in both modalities and builds their relationships. They also
evaluated the detection performance byMRV andMRT, which denote MR evaluating by visible
annotation and thermal annotation, respectively. However, those evaluations were performed
separately, and their detection results have no relationship between visible and thermal bounding
boxes, which makes To evaluate the precision of detection results in both modalities pairwise, we
change the criteria of the greedy matching algorithm from IoU to IoUM, which represents MR
based on IoUM, multi-modal MR (MRM). To use this metric, the detection results must be pairs
of bounding boxes; each pair locates the same object in both modalities, which could have differ-
ent coordinates due to misalignment. Not only isMRM able to measure the precision of bounding
boxes in both modalities simultaneously, but it also measures the ability to correctly match
objects between modalities with misalignment since the detection bounding box pair can mis-
match with other nearby objects, which can potentially become false negative, resulting in lower
MRM. We experiment using MRM as an evaluation metric to demonstrate its effectiveness in
measuring the detection performance against misalignment.

3.2 Proposed Model

We adopt faster R-CNN42 architecture and extend it into a two-stream network for multi-modal
imaging, which consists of multi-modal RPN, multi-modal detector, and multi-modal NMS.
Moreover, our multi-modal mini-batch sampling strategy is introduced. An overview of our net-
work structure is shown in Fig. 3.

3.2.1 Multi-modal RPN

The proposed multi-modal RPN has regressors for both modalities, enabling proposals from
each modality to adjust their sizes and positions independently. After receiving channel-wise
concatenated features from backbone networks, the proposed multi-modal RPN will generate
proposal pairs as its output via classifier and dual-regressor, predicting each proposal pair’s
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confidence score and regressing each proposal individually. We use multi-modal NMS
(Sec. 3.2.3) to filter the best 300 out of many redundant proposal pairs to keep paired relations
of proposals. All remaining proposals will be applied with RoIAlign43 operation to extract their
feature maps into the exact size of 7 × 7 before returning to channel-wise concatenate with their
corresponding pairs, resulting in well-aligned RoI for the detector. While single-modal regressor
returns proposal pair with the same position for both bounding boxes, multi-modal regressor
returns proposal pair with different positions for both bounding boxes, which gives more accu-
rate RoI for detector in case of significant misalignment. We adopt the loss function of RPN from
faster R-CNN42 and add one more regression loss to optimize the precision of both modalities,
which is defined as

EQ-TARGET;temp:intralink-;e004;116;364

Lðfpig; ftVi g; ftTi g; fp�
i g; ftV�i g; ftT�i gÞ ¼ 1

Ncls

X
i

Lclsðpi; p�
i Þ

þ λ

Nreg

X
i

p�
i ½LV

regðtVi ; tV�i Þ þ LT
regðtTi ; tT�i Þ�; (4)

where i is the index of the anchor, pi is the predicted probability of anchor i being an object. p�
i is

ground truth label of anchor i, which equals 1 if anchor i is positive (overlaps with an object
above the high threshold) and 0 if anchor i is negative (overlaps with an object below the low
threshold). Lcls is a cross-entropy over object and not object classes, which is defined as

EQ-TARGET;temp:intralink-;e005;116;239Lclsðp; p�Þ ¼ −ðp� logðpÞ þ ð1 − p�Þ logð1 − pÞÞ: (5)

tVi and tTi are vectors representing parameterized coordinates of predicted bounding box pairs
as t ¼ ðtx; ty; tw; thÞ that associate with anchor i in visible and thermal modalities, respectively,
and tV�i , tT�i are that of the ground truth bounding box pairs. Regression losses LV

reg, LT
reg are

smooth L1 loss for visible and thermal modalities, respectively, which are only activated for
positive anchors (p�

i ¼ 1), defined as

EQ-TARGET;temp:intralink-;e006;116;144Lregðt; t�Þ ¼
X

j∈fx;y;w;hg
smoothL1ðtj − t�jÞ; (6)

in which

Fig. 3 The overall architecture of our network. We extend Faster R-CNN into a two-stream net-
work to take visible-thermal image pairs as input, then return pairs of detection bounding boxes as
output for both modalities. Blue and green blocks/paths represent properties of visible and thermal
modalities, respectively. RoIs and bounding boxes with the same color represent their paired rela-
tions. � denotes channel-wise concatenation.
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EQ-TARGET;temp:intralink-;e007;116;735smoothL1ðxÞ ¼
�
0.5x2 if jxj < 1

jxj − 0.5 otherwise
; (7)

Ncls is mini-batch size andNreg is number of anchor locations. Following Girshick et al.,44 the
parameterized coordinates t ¼ ðtx; ty; tw; thÞ for regression are scale-invariant translation and
log-space shift relative, defined as

EQ-TARGET;temp:intralink-;e008;116;661

tx ¼ ðxp − xaÞ∕wa; t�x ¼ ðx� − xaÞ∕wa;

ty ¼ ðyp − yaÞ∕ha; t�y ¼ ðy� − yaÞ∕ha;
tw ¼ logðwp∕waÞ; t�w ¼ logðw�∕waÞ;
th ¼ logðhp∕haÞ; t�h ¼ logðh�∕haÞ; (8)

where x and y denote the bounding box’s center coordinates and w and h denote its width and
height. Variables p, a, and * denote coordinates of prediction, anchor, and ground truth bounding
boxes, respectively. We set λ ¼ 1 for all experiments.

3.2.2 Multi-modal detector

Similar to RPN, the proposed multi-modal detector network has regressors for both modalities to
independently adjust bounding boxes’ positions and one classifier to predict each bounding box
pair’s confidence score. Multi-modal NMS (Sec. 3.2.3) is also applied to eliminate vague over-
lapping bounding box pairs. We will have detection result as pairs of bounding boxes for both
modalities, which have different sizes and positions in different modalities, resulting in detection
bounding boxes that are precise for both modalities and keep their paired relations. We adopt the
loss function of the detector from fast R-CNN45 and add one more regression loss, which is
defined as

EQ-TARGET;temp:intralink-;e009;116;408

Lðfpig; ftVi g; ftTi g; fp�
i g; ftV�i g; ftT�i gÞ ¼

X
i

Lclsðpi; p�
i Þ

þ λ
X
i

p�
i ½LV

regðtVi ; tV�i Þ þ LT
regðtTi ; tT�i Þ�; (9)

where i is the index of a bounding box pair, Lcls is a cross-entropy for class probability pi and
true class p�

i [Eq. (5)] of bounding box pair i, since we only consider pedestrian class, there are
only two classes, pedestrian and non-pedestrian, in which p�

i equals 1 and 0, respectively.
Regression losses LV

reg, LT
reg are smooth L1 loss [Eqs. (6) and (7)] over predicted regression

offsets tVi , t
T
i and regression targets t

V�
i , tT�i of bounding box pair i for visible and thermal modal-

ities, respectively, which are also parameterized as Eq. (8). We set λ ¼ 1 for all experiments.

3.2.3 Multi-modal NMS

NMS is a technique for selecting one entity out of many overlapping entities, usually using IoU
as a suppression criterion, i.e., when the IoU between bounding boxes exceeds the threshold, the
bounding box with a lower prediction score is suppressed. Since CNN-based methods generate
many dense bounding boxes mostly detecting the same objects, the detection results are cluttered
with unnecessary bounding boxes. Therefore, we use NMS to remove those lower-quality
bounding boxes, keeping only the best bounding boxes to locate the objects. However, since
we need to keep paired relations of bounding boxes between visible and thermal modalities
in this procedure, we must select and suppress bounding boxes in a pairwise approach, or paired
relations would be lost in the suppression process. For this purpose, we attempt various criteria
that can select and suppress bounding boxes in a pairwise manner for our NMS.

As a naive extension, we can use either IoUV or IoUT as multi-modal NMS criteria, i.e.,
making one modality a dictator. In AR-CNN,16 IoUT is used for NMS criteria, neglecting infor-
mation of visible modality. Accordingly, we can use the logical operation of IoUV and IoUT as
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criteria. For OR operation, if either IoUV or IoUT exceeds the threshold, the bounding box pair
with a lower score will be suppressed. For AND operation, if both IoUV and IoUT exceed the
threshold, the bounding box pair with a lower score will be suppressed. Lastly, we use the pro-
posed IoUM as criteria, where the proportion of intersection and union from both modalities is
considered. Examples of proposed multi-modal NMS results with different criteria are shown in
Fig. 4. Several detection bounding box pairs around objects are shown before and after the multi-
modal NMS process.

From Fig. 4(a), IoUV and IoUT clearly show weakness, considering only one modality, these
criteria can not get rid of all ambiguous bounding boxes around the same object, which is also the
same for logical operator AND. On the contrary, logical operator OR and IoUM can suppress need-
less bounding boxes correctly. In case of multiple pedestrians with partial occlusion and mis-
alignment, which is not uncommon in the real situation, correct bounding boxes could be
removed if not handled properly. As shown in Fig. 4(b), IoUV and logical operator AND, while
preserving correct bounding boxes, fail to remove poor bounding boxes around the objects. IoUt

and logical operator OR remove most poor bounding boxes, including correct green bounding
boxes. As a result, less precise yellow bounding boxes remain. Meanwhile, IoUM can suppress
and keep all correct bounding boxes precisely. IoUM is our best candidate for NMS criteria since
it considers the overlaps between bounding boxes in both modalities, unlike other criteria.

(a) Single pedestrian

(b) Two pedestrians with partial occlusion

Fig. 4 Examples of multi-modal NMS processes with different criteria on the scenes where large
misalignment is present. Bounding boxes with the same color reflect paired relations between
them. Left side shows bounding box pairs prior to multi-modal NMS. Right side shows results
of multi-modal NMS with different criteria. (a) Single pedestrian and (b) two pedestrians with partial
occlusion.
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The experiment to demonstrate performance comparison between all NMS criteria is also con-
ducted (Sec. 4.5.2).

3.2.4 Multi-modal mini-batch sampling

We follow sampling strategies from Faster R-CNN42 and Fast R-CNN.45 Although, the dual-
regressor of our method requires that we select training samples as anchor pairs and RoI pairs
for RPN and detector, respectively. Same as NMS, we can use IoUV, IoUT, logical operation of
IoUV and IoUT, or IoUM as criteria. For this purpose, we use IoUM as selection criteria instead of
traditional IoU to consider the location of objects in both modalities. For RPN, we assign pos-
itive labels to anchors that overlap with any ground truth bounding box pair higher than the high
IoUM threshold and assign negative labels to anchors that overlap with all ground truth bounding
box pairs lower than the low IoUM threshold, for a total of 256 anchor pairs, whereas positive
labels can take up to 128 anchor pairs. For detector, we assign positive labels to RoI pairs that
overlap with any ground truth bounding box pair higher than the high IoUM threshold and assign
negative labels to RoI pairs that overlap with all ground truth bounding box pairs lower than the
high IoUM threshold but higher than the low IoUM threshold, for a total of 128 RoI pairs,
whereas positive labels can take up to 32 RoI pairs.

4 Experiments

First, we describe the dataset we used in our experiments. Second, the details of our implemen-
tation are clarified. Third, we indicate evaluation details of our experiments, which include the
explanation of simulated disparity of misalignment experiment. Fourth, we illustrate and discuss
the results of our experiments compared with existing methods, divided into performance com-
parison and qualitative comparison. Finally, we conducted ablation experiments to verify the
effectiveness of our network’s components, multi-modal regressor, and multi-modal NMS.

4.1 Dataset

KAIST dataset8 was used in our experiments. It is one of the widely used multi-modal pedestrian
datasets, with more than 90,000 frames recorded both day and night to consider changes in light
conditions. It was initially assumed to be geometrically aligned. However, the annotations have
many errors,10 such as imprecise localization, misclassification, and misARs. Many researchers
constructed their improved version of annotations to use instead of the original. Improved anno-
tations provided by Liu et al.11 has officially been used as standard annotations for performance
benchmark. Zhang et al.16 carefully analyzed the misalignment problem of KAIST dataset and
were the first to provide paired annotations for KAIST dataset, locating objects for each modality
individually and building their paired relations. Since we focus on the misalignment problem, we
adopted their annotations to use in our work for training and testing.

4.2 Implementation Details

We adopt VGG-1646 pre-trained on ImageNet47,48 as our two-stream backbone networks as in
AR-CNN.16 We train the network for three epochs with a learning rate of 0.005 and one addi-
tional epoch with a learning rate of 0.0005 by stochastic gradient descent optimizer with 0.9
momentum and 0.0005 weight decay. We select 8892 images from the training set containing
informative pedestrians for the training. Image resolution is fixed to 640 × 512. All images are
horizontally flipped and append to original training data for data augmentation. Since we utilize
IoUM as batch sampling and NMS thresholds instead of traditional IoU, we conduct fine-tune
experiments to get the suitable values for those thresholds. For multi-modal RPN’s mini-batch
sampling, we set IoUM of high and low thresholds at 0.63 and 0.3, respectively. For multi-modal
detector’s mini-batch sampling, we set IoUM of high threshold and low thresholds at 0.5 and 0.1,
respectively. For the first NMS following RPN, we set IoUM threshold at 0.7 in the training to
generate proposals with more variation in precision, which can benefit the training of the
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detector, and we set IoUM threshold at 0.55 in the testing to generate bounding boxes with higher
precision. For the second NMS following detector, we set IoUM threshold at 0.53.

4.3 Evaluation Details

To thoroughly evaluate the effectiveness of our method against misalignment, we introduce
simulated disparity of misalignment between modalities as an experiment set up by shifting
thermal images by 2, 4, 6, 8, and 10 pixels horizontally in both directions to imitate the misalign-
ment, which mainly occurs in the horizontal direction. There is no change to visible images.
However, in case of any pedestrian goes over the image border as a result of shifting, That pedes-
trian will be ignored from the evaluation. Subsequently, we will have 11 subsets of different
misalignments as test data for each horizontal shift. Mean and standard deviation (SD) of
MRM over all subsets are also calculated to evaluate the overall performance over different
disparities and robustness to misalignment. For performance comparison, detection performance
was measured by MRM over the range of [10−2, 100] FPPI with IoUM threshold of 0.5 (MRM

50)
and 0.75 (MRM

75), respectively, for all simulated disparity distances. Additionally, MR curves are
plotted by using the mean and the worst MR of all simulated disparity distances over the range of
[10−2, 100] FPPI with IoUM threshold of 0.5 (MRM

50) and 0.75 (MRM
75), respectively. Moreover, to

see the performance of each modality independently, traditional MR of visible (MRV) and ther-
mal (MRT) modalities are also evaluated for all simulated disparity distances, using IoUV for
visible and IoUT for thermal, respectively.

For qualitative comparison, detection performance was measured by mean multi-modal IoU
(mIoUM) between all ground truth bounding boxes and detection bounding boxes with the high-
est mIoUM overlap in each scene. For ablation study, detection performance was measured by
MRM over the range of ½10−2; 100� FPPI with IoUM threshold of 0.5 (MRM

50) for all simulated
disparity distances. All experiments were performed under reasonable configuration,8 i.e., only
pedestrians taller than 55 pixels under partial or no occlusion are considered. Only 2252 frames
sampled from the test set with 20-frame skips were used in the performance test as traditional.

4.4 Comparison with Existing Methods

We selected three existing methods for our experiments, MSDS-RCNN10 is representative of
methods without misalignment consideration, AR-CNN16 and MBNet17 are methods that
consider misalignment, trained by KAIST-paired annotations provided by Zhang et al.16 For
methods that do not have paired detection bounding boxes as their outputs, we substituted paired
detection bounding boxes with their detection bounding boxes from one modality.

4.4.1 Performance comparison

As given in Table 1, MSDS-RCNN, the only method not considering misalignment, has much
poorer performance than other methods, especially when the simulated disparity is significant.
As for the proposed method, we have mediocre performance when there is no simulated dis-
parity, and so as shift distance of −2, doing worse than MBNet17 by about 8%. It is noteworthy
that AR-CNN16 and MBNet17 have better performance at shift distance of −2 than without simu-
lated disparity. This demonstrates that the dataset has some misalignment from the beginning,
and simulated disparity could align objects in certain circumstances. Our method, however, has a
noticeable performance improvement, achieving the bestMRM

50 when disparities are larger than 4
pixels, demonstrating the effectiveness against misalignment of our method. Our method also
achieved the best performance at all disparities when IoUM threshold is 0.75, as shown in
Table 2, i.e., our method performs the best when the requirement of bounding boxes’ precision
is strict, indicating the superior precision of the proposed method’s detection bounding boxes.
We also have the lowest mean and SD for both MRM

50 and MRM
75, demonstrating our best overall

performance over all misalignment situations and most robust against misalignment.
The MR plots by mean MR (solid lines) and worse miss (dashed lines) rate over all simulated

disparity distances is shown in Fig. 5. We can see MR plot of proposed method’s mean MR at the
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Table 1 Comparison with state-of-the-art methods on KAIST dataset, with simulated disparity of
misalignment in the horizontal direction by MRM

50, including their mean and SD over all shifted
distances. Positive horizontal shift distances mean shifting to the right direction, and negative hori-
zontal shift distances mean shifting to the left direction. Bold values indicate the best performance.

Methods

Thermal images’ horizontal shift distance (px)

Mean SD−10 −8 −6 −4 −2 0 2 4 6 8 10

MSDS-RCNN10 27.06 18.76 15.93 12.74 12.58 11.09 11.72 13.25 15.06 21.38 27.48 17.00 5.94

AR-CNN16 21.61 14.65 10.43 8.67 8.22 8.79 8.68 10.10 11.02 14.65 19.84 12.42 4.69

MBNet17 23.14 15.31 11.02 8.92 7.70 7.76 8.64 9.88 11.17 14.87 21.70 12.74 5.43

Ours 15.46 11.60 10.21 8.51 8.43 8.28 8.50 9.14 10.31 12.51 15.87 10.80 2.77

Table 2 Comparison with state-of-the-art methods on KAIST dataset, with simulated disparity of
misalignment in the horizontal direction by MRM

75, including their mean and SD over all shifted
distances. Positive horizontal shift distances mean shifting to the right direction, and negative hori-
zontal shift distances mean shifting to the left direction. Bold values indicate the best performance.

Methods

Thermal images’ horizontal shift distance (px)

Mean SD−10 −8 −6 −4 −2 0 2 4 6 8 10

MSDS-RCNN10 93.05 89.46 83.55 76.78 71.70 70.10 70.97 77.29 84.71 91.35 95.46 82.22 9.35

AR-CNN16 94.25 91.64 87.64 78.70 69.57 61.77 65.13 71.56 81.81 90.29 94.79 80.65 12.06

MBNet17 90.89 87.50 80.33 70.81 63.63 58.82 63.15 71.33 80.75 89.27 93.87 77.30 12.39

Ours 63.30 59.94 56.67 55.87 55.45 55.07 55.39 56.35 57.01 59.72 62.58 57.94 2.96

Fig. 5 Comparison of state-of-the-art methods’ performance on KAIST dataset by mean MR (solid
lines) and worst MR (dashed lines) of eleven different simulated disparities to FPPI curves.
Numbers in legend show geometric mean of mean MR and geometric mean of worst MR over
FPPI in the range of [10−2, 100] of each method. (a) IoUM threshold of 0.5 and (b) IoUM threshold
of 0.75.
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bottom, with MR plot of the worst case being comparable to MR plots of other SOTA methods
from Fig. 5(a). Our method also achieved the bestMRM

50, which is calculated by geometric mean
of MR and over [10−2, 100] FPPI, for both mean MR and worst MR, lower than AR-CNN16 by
13% and 27%, respectively. From Fig. 5(b), our proposed method clearly outshines other SOTA
methods, separating at the bottom for both mean and worst case plots, demonstrating the superior
robustness to misalignment and bounding box precision in both modalities. Same as MRM

50, our
method achieved the bestMRM

75 for both mean MR and worst MR, better than MBNet17 by 25%
and 32%, respectively.

The performances measured by MRV
50 and MRT

50 are given in Table 3. Our proposed method
significantly outperforms others on MRV

50 when the disparities are large and has better perfor-
mance overall, indicated by the lowest mean. On MRT

50, while AR-CNN
16 has the best perfor-

mance and we are comparable to them, AR-CNN has an inferior performance on MRV
50. The

reason might be because AR-CNN used thermal images as reference modality, making it more

Table 3 Comparison with state-of-the-art methods on KAIST dataset, with simulated disparity of
misalignment in the horizontal direction by MRV

50 and MRT
50, including their mean and SD over all

shifted distances. Positive horizontal shift distances mean shifting to the right direction, and neg-
ative horizontal shift distances mean shifting to the left direction. Bold values indicate the best
performance.

Methods

Thermal images’ horizontal shift distance (px)

Mean SD−10 −8 −6 −4 −2 0 2 4 6 8 10

MSDS-RCNN10

MRV
50 30.43 21.90 16.91 12.98 12.24 11.28 12.36 14.30 17.92 24.73 33.16 18.93 7.65

MRT
50 38.89 29.52 22.02 15.92 14.35 12.51 13.92 16.28 20.17 27.71 34.88 22.38 9.09

AR-CNN16

MRV
50 70.83 57.92 37.70 19.14 11.40 9.12 13.41 17.54 27.80 43.26 61.39 33.59 22.05

MRT
50 11.23 9.64 8.82 8.09 8.04 9.05 8.16 8.22 8.97 10.13 10.23 9.14 1.05

MBNet17
MRV

50 38.56 26.42 16.25 10.27 8.82 7.89 8.68 10.38 13.81 19.19 29.05 17.21 10.11

MRT
50 26.06 18.82 13.14 10.04 8.99 8.12 9.89 12.35 16.05 22.84 28.60 15.9 7.21

Ours
MRV

50 19.33 16.43 12.86 10.83 10.10 9.32 9.63 10.09 11.87 13.69 17.99 12.92 3.53

MRT
50 12.92 11.31 10.41 8.83 8.45 8.55 8.46 9.40 9.85 11.41 12.87 10.22 1.69

Table 4 Comparison with state-of-the-art methods on KAIST dataset, with simulated disparity of
misalignment in the horizontal direction by MRV

75 and MRT
75, including their mean and SD over all

shifted distances. Positive horizontal shift distances mean shifting to the right direction, and neg-
ative horizontal shift distances mean shifting to the left direction. Bold values indicate the best
performance.

Methods

Thermal images’ horizontal shift distance (px)

Mean SD−10 −8 −6 −4 −2 0 2 4 6 8 10

MSDS-RCNN10

MRV
75 81.55 77.81 72.59 70.24 67.44 68.42 71.62 77.72 82.59 87.20 89.82 77.00 7.62

MRT
75 92.42 89.96 87.03 81.99 77.13 72.49 72.35 77.64 81.27 85.73 90.18 82.56 7.08

AR-CNN16

MRV
75 96.60 94.88 93.51 88.88 81.35 62.92 71.47 78.89 88.97 94.76 97.22 86.31 11.32

MRT
75 57.32 56.97 55.29 55.33 53.59 61.57 56.50 56.83 57.81 59.13 60.80 57.38 2.38

MBNet17
MRV

75 86.04 84.08 79.19 72.75 65.72 60.42 61.88 67.83 74.87 82.18 87.55 74.77 9.79

MRT
75 84.34 81.33 77.68 69.92 63.34 59.86 66.90 73.98 80.47 86.05 88.30 75.65 9.57

Ours
MRV

75 65.81 63.74 61.60 59.61 58.99 57.23 58.10 58.23 59.72 61.94 63.78 60.80 2.78

MRT
75 59.35 56.96 56.40 55.17 54.59 54.77 55.01 55.95 57.44 58.28 60.19 56.74 1.91
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biased toward thermal modality. Meanwhile, our method can maintain good performance in both
modalities at the same time. Generally, we have significantly better performance in visible
modality and comparable performance to AR-CNN in thermal modality. From Table 4, we have
significantly betterMRV

75 at all disparities and comparable performance with AR-CNN onMRT
75.

Overall, we have the best performance in both evaluation metrics and are the most robust to
misalignment, indicated by the lowest SD. In summary, our bounding boxes are well placed
in both modalities despite the misalignment compared to other SOTA methods.

4.4.2 Qualitative comparison

We provide visualization of detection results from several state-of-the-art methods on four scenes
from KAIST8 test set with a varied amount of misalignment to measure each method’s quality in

(a) (b) (c) (d)

Fig. 6 Qualitative comparison examples of detection results on KAIST dataset of (a) MSDS-
RCNN;10 (b) AR-CNN;16 (c) MBNet;17 and (d) ours. Scene N1 and D1 are original test images
without simulated disparity. Scene N2 and D2 are test images with simulated disparity from shifting
10 pixels to the left and right direction, respectively. Green bounding boxes represent ground truth
by Zhang et al.,16 and red bounding boxes represent detection results. Dashed line bounding
boxes denote substituted bounding boxes for methods that do not have paired bounding boxes.
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terms of detection precision and reliability. For methods that only have detection bounding boxes
localizing objects in one modality, we replicated detection bounding boxes in the other modality
with the same position and showed them as dashed line bounding boxes, i.e., we replicated
thermal bounding boxes for MSDS-RCNN10 and MBNet,17 visible bounding boxes for
AR-CNN.16

Scene N1 is a scene at nighttime with no misalignment between modalities and without simu-
lated disparity. Scene D1 is a scene at daytime with significant distortion, causing each pedes-
trian to have different disparities, especially the leftmost pedestrian, without simulated disparity.
Scene N2 is a scene at nighttime with slightly weak misalignment between modalities, and we
add simulated disparity by shifting the thermal image by 10 pixels to the left direction. Scene D2
is a scene at daytime with huge misalignment from the beginning. We then add simulated dis-
parity by shifting the thermal image by 10 pixels to the right direction for larger misalignment.
We evaluate the mean IoUM of all detection bounding boxes with the highest IoUM overlap with
each ground truth bounding box with at least 0.01 prediction score for each scene to measure the
quality of bounding boxes of each method. As illustrated in Fig. 6, in Scene N1, our method
could not demonstrate its strength since there is no misalignment. Moreover, the multi-modal
regression also causes detection bounding boxes in visible modality to regress without clear
information instead of staying at the same place as thermal bounding boxes, degrading the pre-
cision even further. In Scene D1, we can notice the more precise detection bounding boxes of the
proposed method, especially at the leftmost pedestrian. Our method was able to adjust the detec-
tion bounding boxes in thermal modality closer to the pedestrian, despite the extreme misalign-
ment. Still, the adjustment is not so great, which might be caused by the unusual pedestrian in
dark color in thermal modality instead of bright color. In Scene N2 and D2, when misalignment
is large, our method clearly shows its advantage by adjusting bounding boxes’ positions for both
modalities, resulting in the highest mIoUM.

4.5 Ablation Study

We conduct ablation experiments to investigate our network’s components and analyze each
component’s effectiveness. First, we compare the performance of a typical two-stream faster
R-CNN with our proposed models composed of either only multi-modal RPN or multi-modal
detector and both of them. Second, we compare the performance of our proposed models trained
and tested by different NMS criteria for both RPN and detector. Lastly, we compare the per-
formance of our proposed models trained by different mini-batch sampling criteria for both RPN
and detector.

4.5.1 Regressor comparison

As given in Table 5, we can see that multi-modal regressor RPN does not significantly improve
from a single-regressor, showing that the detector could not fully utilize RPNs output.
Unquestionably, the performance improves drastically when a multi-modal regressor detector
is implemented, especially with large misalignment, showing the benefit of locating objects
in each modality individually. Finally, our network with both components has the best perfor-
mance, indicating the effectiveness of both multi-modal RPN and multi-modal detector
combined.

4.5.2 NMS comparison

As given in Table 6, IoUM outperforms other criteria in this experiment. IoUT also performs
surprisingly well as the first runner-up. The reason might be that most of the pedestrians in
KAIST dataset can be recognized by thermal modalities alone, and the misalignment is not
significant in most test sets. Nevertheless, this experiment shows that IoUM can be utilized
as NMS criteria for multi-modal pedestrian detection and perform the best compared to other
criteria.
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4.5.3 Mini-batch sampling comparison

From Table 7, IoUM has the best performance when shift distance is less than or equal to 8 and
also achieves the lowest meanMRM. However, IoUM is inferior to OR when the shift distance is

Table 6 Comparison of the proposed multi-modal Faster R-CNN consisting of different NMS cri-
teria on KAIST dataset, with simulated disparity of misalignment in the horizontal direction by
MRM

50, including their mean and SD over all shifted distances. Positive horizontal shift distances
mean shifting to the right direction, and negative horizontal shift distances mean shifting to the left
direction. Bold values indicate the best performance.

NMS
criteria

Thermal images’ horizontal shift distance (px)

Mean−10 −8 −6 −4 −2 0 2 4 6 8 10

IoUV 16.17 13.18 11.67 10.71 11.10 10.82 11.42 12.10 13.38 14.56 18.76 13.08

IoUT 15.86 12.24 10.33 9.08 8.82 9.00 9.08 10.17 11.41 13.30 17.60 11.54

OR 16.95 12.64 11.37 9.92 10.24 9.85 10.06 10.72 12.09 13.97 16.53 12.21

AND 20.51 15.18 11.84 9.98 9.50 9.38 9.43 10.29 11.51 15.05 18.98 12.88

IoUM 15.46 11.60 10.21 8.51 8.43 8.28 8.50 9.14 10.31 12.51 15.87 10.80

Table 5 Comparison of the proposed multi-modal Faster R-CNN consisting of different compo-
nents on KAIST dataset, with simulated disparity of misalignment in the horizontal direction by
MRM

50, including their mean and SD over all shifted distances. Positive horizontal shift distances
mean shifting to the right direction, and negative horizontal shift distances mean shifting to the left
direction. Bold values indicate the best performance.

RPN’s
regressor

Detector’s
regressor

Thermal images’ horizontal shift distance (px)

Mean−10 −8 −6 −4 −2 0 2 4 6 8 10

Single Single 24.41 16.42 13.08 11.03 10.19 10.07 11.03 11.66 13.69 15.81 21.15 14.41

Multi Single 24.33 17.04 12.92 10.57 9.93 9.99 10.59 11.48 12.49 15.09 20.46 14.08

Single Multi 18.54 13.25 10.20 9.17 8.57 8.96 9.21 9.90 11.44 13.19 17.18 11.78

Multi Multi 15.46 11.60 10.21 8.51 8.43 8.28 8.50 9.14 10.31 12.51 15.87 10.80

Table 7 Comparison of the proposed multi-modal Faster R-CNN trained by different mini-batch
sampling criteria on KAIST dataset, with simulated disparity of misalignment in the horizontal
direction by MRM

50, including their mean and SD over all shifted distances. Positive horizontal shift
distances mean shifting to the right direction, and negative horizontal shift distances mean shifting
to the left direction. Bold values indicate the best performance.

Sampling
criteria

Thermal images’ horizontal shift distance (px)

Mean−10 −8 −6 −4 −2 0 2 4 6 8 10

IoUV 20.77 16.82 14.42 13.38 13.28 13.25 13.27 14.73 15.36 17.34 21.31 15.81

IoUT 14.75 11.89 10.90 9.62 9.65 9.76 9.53 10.16 10.85 13.40 16.30 11.53

OR 14.54 11.66 10.70 10.03 9.07 9.23 10.07 10.10 11.40 12.91 15.26 11.36

AND 17.03 13.07 10.92 9.97 9.39 9.46 9.62 10.76 11.74 14.38 18.52 12.26

IoUM 15.46 11.60 10.21 8.51 8.43 8.28 8.50 9.14 10.31 12.51 15.87 10.80
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10. The reason could be that OR is better at learning extreme cases, such as very large misalign-
ment. Still, it has worse performance at no or weak misalignment as a trade-off. Overall, IoUM

has the best performance. It is worth considering how to make a multi-modal network perform
well at any level of misalignment.

5 Conclusion

In this article, we have analyzed the current misalignment problem of existing multi-modal
pedestrian detection methods. We have proposed the novel multi-modal detection method based
on modal-wise regression and IoUM, consisting of multi-modal NMS, multi-modal RPN, and
multi-modal detector. We have also introduced new evaluation metrics for multi-modal detec-
tion, IoUM and MRM. The proposed method is robust to large misalignment, independently
localizes pedestrians in each modality, and keeps their paired relations. Our experiments showed
that when the misalignment is large or the precision requirement of bounding boxes is high, our
proposed method achieves the best performance compared to state-of-the-art methods, demon-
strating our robustness to misalignment and superior precision of detection bounding boxes in
both modalities. However, the performance of our method when there is no misalignment is still
lackluster, and even though we achieve the best performance when misalignment is significant, it
is still not good enough to be reliable in crucial real-life applications such as autonomous driving
cars, which has no room for any error. According to experimental results, we will improve our
network’s performance in more cases in our future work, not only in cases of misalignment.
Moreover, no method currently independently infers objects’ position for both modalities and
builds their pair relations besides ours. We hope future research will consider our concern and
use our proposed evaluation metric to evaluate multi-modal detection with misalignment.
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