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1 Introduction
The micro-optical resonator is a structure that plays a key
role in many photonic devices and can take on several geom-
etries, such as defect sites in photonic crystals,1,2 ring wave-
guides,3 laser cavities,4,5 microspheres,6 capillaries,7 disks,8

and of particular interest here, the bottle resonator.9 The most
common bottle resonator configuration consists of a radially
enlarged region on a solid or hollow glass fiber. The radial
and axial profile of the enlarged region determines the optical
properties of the modes that may circulate in the azimuthal
direction.10,11 The resulting bottles are usually quite large
compared to the wavelength at which they are designed to
operate as they are constructed in glass. We examine theo-
retically the modal properties of a silicon-based bottle reso-
nator configuration in air. The high-index contrast that exists
permits a smaller bottle radius and is on a size scale compat-
ible with silicon photonic devices. For this article, we have
chosen the silicon bottle enlargement to have a Gaussian pro-
file in the axial direction. The structure is analyzed using the
cylindrical coordinate representation of the full vector wave
equation cast as an eigenvalue problem by making use of
Fourier–Bessel (FB) basis functions to represent the fields
and inverse dielectric profile. The resonator frequencies
(wavelengths) and field profiles are computed and presented
for various azimuthal mode orders.

There are a number of numerical techniques available for
the calculation of the frequencies and field profiles of reso-
nator states. In this article, we are concerned with whisper-
ing-gallery modes in a cylindrically symmetric dielectric
structure. If the dielectric profile is such that the separation
of variable techniques can be applied, Maxwell’s wave equa-
tion may be directly solved and field continuity applied at the

various interfaces.12 In the case involving more general
dielectric profiles, one usually resorts to either the finite-dif-
ference-time-domain (FDTD) or finite-element-method
(FEM) techniques.13,14 The dielectric structure is decom-
posed into a three-dimensional grid and the modes are
obtained. The computer resources and computation time
using these techniques scale with the complexity of structure
under analysis. In a number of instances, the dielectric pro-
file examined is such that simplifications in the analysis
equations can be performed resulting in a numerical
approach that provides the states in a more time efficient
manner. The technique presented here is general and can
be placed on the same level of complexity as FDTD and
FEM. As will be discussed, the present cylindrical symmetry
permits a significant reduction in computer resources and
computation time.

In the next section, the key mathematical steps leading to
the eigen-matrix for the resonators expressed in cylindrical
coordinates and using a FB basis function set are provided.
Section 3 presents the geometry of the micro-optic silicon
bottle resonator and examines the expansion coefficient
space related to FB basis. In Sec. 4, the eigenvalue state
space and corresponding field profiles, determined through
the eigenvectors, are represented. The dominant features of
the modes are provided. In Sec. 5, the hollow core silicon
bottle resonator is examined as a design modification to
the solid core bottle. Appendix A provides a set of equations
required to populate the eigen-matrix.

2 General Mode Solver Development
The mode solver suitable for obtaining the frequencies and
field profiles of the states supported by a cylindrically
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symmetric dielectric structure, “bottle configuration of inter-
est here,” is based on solving Maxwell’s wave equations
using an eigenvalue formulation. When the curl equations
are combined for a charge-free, current-free, and nonmag-
netic medium with a time variation expressed as e−jωt, the
equations are

∇ ×
�
1

εr
∇ × ~H

�
¼

�
ω

c

�
2
~H;

1

εr
∇ × ð∇ × ~EÞ ¼

�
ω

c

�
2
~E:

(1)

In Eq. (1), c is the free-space speed of light and εr is the
relative dielectric constant. As for the familiar plane-wave
analysis for photonic crystals,15 a set of basic functions is
selected from which a series expansion of the inverse dielec-
tric and field components are proposed. In cylindrical space,
the basic functions selected are

Jo

�
ρp

r
R

�
ejmφejGnz ¼ Foð Þ: (2)

For the radial coordinate, only the lowest order Bessel
function is needed as a series expansion in Joð Þ can represent
any function over a finite interval 0 ≤ r ≤ R.16 The radial
expansion index, p, selects the p’th zero of the Bessel func-
tion, ρp. Within the interval for r, the lowest order Bessel
functions are orthogonal. In the azimuthal direction, the
complex exponential function is employed as it is orthogonal
over the 2π interval withm as an integer, −∞ ≤ m ≤ þ∞. In
the axial direction, a complex exponential is also selected.
Here, it is assumed that the dielectric is periodic in z with
a period T. The Gn in the exponential is equivalent to recip-
rocal lattice “vectors” (Ref. 17) for the axial direction (thus
scalar) and take on the form nð2π∕TÞ with −∞ ≤ n ≤ þ∞.
The axial basis function contributions are orthogonal over
the periodic interval T. As the development to follow
will involve rather lengthy expressions, the basis function
notation is simplified to Foð Þ, which requires three indices
ðp;m; nÞ and within the bracket, a parameter indicating if the
basic function is related to the inverse dielectric ½Ω ¼ ð1∕εrÞ�
or field component ðr → Hr;φ → Hφ; z → HzÞ. The lower
subscript indicates the order of the Bessel function. Radial
derivatives give rise to the first-order Bessels and the asso-
ciated basis function notation is F1ð Þ. With these basis func-
tions, the inverse dielectric expansion is
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where κΩ is the expansion coefficients and the summation is
performed over the indices pΩmΩnΩ now implicitly written

as belonging to the inverse dielectric. From a mathematical
perspective, it is more practical to develop the eigen-matrix
expression using the ~H wave equation. Once the matrix
element generating expressions are obtained, the ~E matrix
expression can be directly obtained by setting all derivatives
of the inverse dielectric to zero and substituting the symbol E
for H. As such, the eigen-matrix development will proceed
using the top of Eq. (1). The H field in cylindrical coordi-
nates is expressed as ~H ¼ Hrr̂þHφφ̂þHzẑ, where the
series expansion for each component is of the form:
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Here, i is used to represent the field component and the
summation is taken over the indices related to that particular
field component. The next step is to expand the double curl
of Eq. (1) and form three separate equations, one for each of
the field components specified by the RHS field. The deriva-
tive expressions related to ðHr;Hφ; HzÞ are
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When the derivatives of the series expansions for the field
components and inverse dielectric are performed, the follow-
ing equations are obtained:
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The set of Eqs. (8)–(10) can be cast into an eigenvalue
problem by making use of the orthogonality properties of
the basic functions and integrating over the cylindrical vol-
ume defining the dielectric profile. The resulting eigen-
matrix is cast into the following general form:
2
4 Rr φr Zr

Rφ φφ Zφ

Rz φz Zz

3
5
2
4 R
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Z

3
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�
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Φ
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5: (11)

The column matrix

2
4 R
Φ
Z

3
5 represents the expansion coef-

ficients collected by field component and structured based on
the summation index sequence. The square matrix is seg-
mented into three row blocks and three column blocks.
The first row is generated from Eq. (8), the second row
from Eq. (9), and the third row from Eq. (10). The expres-
sions required to generate the matrix elements within each
block are provided in Appendix A. A fair bit of structuring
is required in order to keep the square matrix elements linked
to the expansion coefficients of the column matrix. I is the
identity matrix. As will be shown in the next sections, sym-
metry arguments can be used to greatly reduce the order of
the matrix in Eq. (11) and can be solved on a desktop PC.
Note that expressions provided in Appendix A used to pro-
duce the matrix elements in Eq. (11) have no simplifications
or assumption introduced other than those indicated prior to
Eq. (1) in their derivation; therefore, they can be applied to
the determination of the steady states of any nonmagnetic,
charge, and current free-dielectric structure with overall
cylindrical symmetry. The derivation can be slightly modi-
fied to include an axial propagation contribution, kz, by
replacing ejGni

z with ejðGni
þkzÞz in the field expressions

[Eq. (4)] and replacing Gni by ðGni þ kzÞ in the matrix
element generating expression in Appendix A.

The eigenvalues obtained may be real or complex depend-
ing on which type of state they are related to, ðωcÞ2 ¼
Wreal þ jWimag. The real and imaginary parts of the state
frequencies can be obtained through the following:

ωreal ¼
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−Wreal þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W2
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qr
: (12)

The corresponding free space wavelength is determined
from

λ ¼ 2πc
ωreal

: (13)

The eigenvectors represent the expansion coefficients of
the field profile and may also contain real and complex con-
tributions. These are obtained at the same time as the eigen-
values using, for instance, the eigðÞ function in MATLAB©.
Examination of the eigenvector coefficients and determina-
tion of the dominant field contribution provide insight into
the state’s properties.

3 Silicon Bottle Dielectric Profile
The silicon bottle resonator configuration is shown in Fig. 1.
The structure can be considered as the contact of a uniform
dielectric silicon cylinder of height T ¼ 3 μm and radius
D ¼ 1.75 μm and a silicon Gaussian profile extension cen-
tered on the z axis with an amplitude of 0.5 μm (L-D) and σ
of 0.33 μm. The structure presents a cylindrical symmetry
and can be efficiently characterized using the ðr;φ; zÞ coor-
dinate system. For computation purposes, the structure is
taken as periodic in the z direction with a height sufficiently
large such that the resonator bottle modes are well isolated
from the axial plane periodic interfaces at þT∕2 and −T∕2.
The external free-space region extends to a radius of
R ¼ 3 μm and is sufficient to isolate the bottle resonator
modes from the radial computation domain edge. In a pre-
vious publication dealing with photonic crystals decomposed
using a FB basis functions for the ðr; θÞ polar coordinates,
we have shown that the rotational symmetry of the dielectric
imposes restrictions on the nonzero expansion coefficients
for the inverse dielectric.18 Only the base symmetry of the
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dielectric and its integer multiples produce nonzero expan-
sion coefficients. The dielectric structure in Fig. 1 is uniform
with respect the azimuthal coordinate φ and can thus be
regarded as having infinite rotational symmetry. This prop-
erty implies that the decomposition of the dielectric should
be independent of the azimuthal coordinate and imposes the
condition that the only nonzero inverse dielectric expansion
coefficients in Eq. (3) are obtained when mΩ ¼ 0 · ∞ ¼ 0.
The next index pair would be mΩ ¼ �1 · ∞, which is not
attained in a finite series expansion.

As indicated above, the expansion coefficients of the
inverse dielectric are required in the eigen-matrix.
Figure 2 shows a plot of the absolute value for the real
part of the expansion coefficients for up to 100 Bessel
Functions ð1 ≤ pΩ ≤ 100Þ and 101 axial exponential
ð−50 ≤ GnΩ ≤ 50Þ with mΩ ¼ 0. As expected, the dominant
expansion coefficients are observed for the zero axial order
and lowest Bessel order since the structure is primarily a

right cylinder. All nonzero expansion coefficients with
axial order other than zero define the bottle dielectric region.
The range of the indices and number of basis functions
needed to accurately represent the inverse dielectric is deter-
mined by examining how well the inverse dielectric profile is
reproduced through Eq. (3). The use of 100 Bessel and 101
azimuthal functions reproduces the inverse dielectric bottle
region with <1% difference when compared to the original
inverse dielectric profile.

4 Eigen-State Determination

4.1 Matrix Properties/Order Reduction

Determination of the eigen-state requires that the elements of
the matrix be computed using the expressions given in
Appendix A. The dielectric decomposition has nonzero
expansion coefficients only when mΩ ¼ 0 for the structure
considered with infinite rotational symmetry. This plays a
significant role in simplifying the eigen-matrix and reducing
the order of the matrix that needs to be solved. The expres-
sions in the eigen-matrix produce a zero matrix element
unless mΩ ¼ mLHS −mRHS. If all possible azimuthal mode
orders are considered and the resulting matrix is examined,
the column and rows for the nonzero elements of one
azimuthal mode order are padded with zeros produced
from the other azimuthal mode orders. As a result, the matri-
ces for each azimuthal order are independent, which can be
extracted into separate submatrices and solved independ-
ently. This significantly reduces the order of the matrix to
which the eigenvalues and eigenvectors are to be determined.
In addition, these submatrices may have the order further
reduced by one-half, recognizing that the matrix contribution
produced for ðmLHS; mRHSÞ both positives is separable from
the matrix contribution with ðmLHS; mRHSÞ both negatives.
Both of these submatrices ðþ;þÞ, ð−;−Þ produce the
same eigenvalue space but the eigenvector space is the com-
plex conjugate of each other. The full eigenvector is pro-
duced by combining both. As an example of matrix order
reduction, using 100 Bessel functions and 101 axial expo-
nentials and requiring the properties, the 50 lowest azimuthal
order modes result in a full matrix of order 3,060,300 while
through matrix order reduction, the individual azimuthal
mode properties can be determined from a matrix with
order 30,300, which can be accommodated on a desktop
PC. Note: The plane-wave analysis technique applied to
this type of dielectric structure would require a unit cell
well separated such that the steady states are isolated
between cells. A square unit cell would be defined in
Fig. 1 rather than a right cylinder. If 100 exponentials
were to be used in the expansions for each of the coordinate
directions, the matrix would have an order of 3,000,000.
Clearly, the FB approach in cylindrical coordinates provides
a much more resource efficient and time-managed approach
to the steady-state determination process for the cylindrical
symmetric dielectric profiles. Using a basis function set
related to the symmetry of the dielectric to reduce the
order of the eigenmatrix is suggested in Refs. 19 and 20.

4.2 Mode Solutions by Azimuthal Mode Number

We first consider obtaining the eigen-states for a mode pro-
file that has a rotational symmetry in the azimuthal direction
equal to 22. For this mode order, the only possible nonzero

Fig. 1 Three-dimensional representation of the high dielectric region
of the silicon bottle resonator configuration. The bottle region has a
Gaussian profile with design parameters as indicated in the text.
For computation purposes, the structure is periodic in the axial direc-
tion with sufficient height such that the bottle states are well isolated
from the periodic boundaries. The structure domain is extended to a
radius of 3 μm, black line external cylinder, with air filling the region
between silicon and radial boundary.

Fig. 2 Plot of the absolute value of the real part of the expansion coef-
ficients for the inverse dielectric given in Eq. (3). The Bessel order, pΩ,
ranges from 1 to 100 and the axial order, nΩ, ranges from −50 to 50.
Rotational symmetry of the structure imposes that the only nonzero
expansion coefficients occur when mΩ ¼ 0. The imaginary parts to
the coefficients (not shown) are 2 to 3 orders of magnitude smaller.
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field expansion coefficients occur when mi ¼ �22. The
eigen-matrix of the H field for this mode order can be gen-
erated using Eq. (11) and the expressions are provided in
Appendix A. Sufficiently converged eigenvalues and field
profiles are obtained using 75 Bessel terms and 39 axial
exponentials for the bottle structure examined here. (Note:
The convergence is based on examining the variation in
the eigenvalues and eigenvectors of the desired bottle states.)
The matrix solution returns 8775 eigenvalues that extend
from very small to very large values, real and complex.
Within these are contained the desired bottle states. It is
expected that the bottle states should have a wavelength
located within the scale of the dielectric structure. The

eigenvalues [converted to free-space wavelength using
Eq. (13)] are plotted in Fig. 3 for the 1 to 3 μm range.
The eigenvalues for which the eigenvector expansion coef-
ficient space is dominated by the Hz field component are
plotted in the upper trace. The lower trace is plotted for
the remaining eigenvalues dominated by the ðHr;HφÞ
field components and are related to the other set of hybrid
states and in fact are decoupled from Hz for a uniform
axial dielectric. Solving the E field equation in Eq. (1)
and examining the eigenvectors dominated by the Ez field
component expansion coefficients provide the second set
of hybrid states. The remainder of the presentation focusses
on states dominated by Hz. For the wavelength range
depicted in Fig. 3(a), the wavelength states of 2.23 μm
and larger (not shown) have eigen frequencies with a
large imaginary contribution. These form the set of unphys-
ical states and are similar to physically unrealistic states of
slabs and other waveguides.21 The imaginary frequency of
the states with wavelengths of 1.71 μm and lower are of
the order of 10−9 and are effectively zero (numerically).
These form the eigen-state of the resonator with several
of the states localized in the bottle region and other states
extending the full axial length of the dielectric structure.
The field profiles, reconstructed using the eigenvectors,
are examined below and facilitate the distinction between
the two types. It is worth noting that the field expression pro-
vided in Eq. (4) makes use of the lowest order Bessel func-
tion for the entire radial extent. The radial series expansion is
suitable for modeling the field in the high dielectric region
and in the low dielectric region even if the low dielectric field
region were to be of an “evanescent” nature.

Figure 4 shows the intensity of the Hz field for the states
at wavelengths 1.707, 1.557, 1.507, and 1.426, plotted in the
ðr; zÞ plane, top profiles, and in the ðr;φÞ plane, lower pro-
files. The solid line represents the interface between the high
and low dielectric regions. Here, the modes are labeled as
R0Z0, R0Z1, R1Z0, and R1Z1, which are based on the number
of zero crossing of the field in the radial and axial directions.

Fig. 3 Wavelengths computed for modes with azimuthal order 22
which lie in the 1 to 3 μm range. Top trace is plotted for the eigenvec-
tors dominated by the Hz field expansion coefficients. Within these,
three types of states are observed, unphysical, bottle, and dielectric
confined states. Lower trace is for the Hr ; Hφ dominated states.

Fig. 4 Field profiles in the ðr ; zÞ → top and ðr ;φÞ → lower planes for the bottle confined modes with azimuthal order of 22. Counting the null regions
in the radial and axial direction permits the labeling of the states as R0Z 0, R0Z 1, R1Z 0 and R1Z 1. The ghosting that is observed in the azimuthal
plots is related to limiting the expansion series to 75 Bessel and 39 axial exponentials. It constitutes <1% of the field value.
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As the RZ null number increases, the fields are less confined
to the bottle region typical of optical waveguide solutions in
slab and ridge geometries. For the traces in the azimuthal
plane, the states are plotted using the axial value that corre-
sponds to the maximum in the field value. Azimuthal mode
order of 22 is confirmed as there are 44 high intensity regions
per 2π rotation. In general, the excitation of bottle states is
accomplished using an external waveguide (fiber) or a
focused laser beam. Knowledge of the mode profile and
polarization of the bottle states is crucial in designing a
large overlap integral between the incident and supported
fields. The FB eigen-approach presented here provides a
means of accurately calculating the modes frequency, wave-
length, and field profile. A parameter highly desired in res-
onator design is the quality factor,Q. The dielectric structure
under analysis has no loss mechanisms presented. Thus, the
eigen-frequencies of the bottle states are real and indicate an
infinite Q. However, in a real application of the bottle res-
onator, input and output power coupling mechanisms must
be included and the Q of the resonator would be finite. An
estimation of the Q factor should be possible by taking the
field profile of the bottle state of interest and calculating its
overlap with the power bleeding environment (waveguide,
lossy medium, . . . ).

Six of the modes with wavelengths below 1.426 μm are
plotted in Fig. 5. They extend the full axial length and
present either an even symmetry (top) or odd symmetry
(lower) with respect to the structures’ center and upper/
lower axial periodic boundaries. These modes resemble,
to a large extent, the guided modes of a ridge waveguides
resting on a low dielectric substrate. To a first approximation,
whispering-gallery states have been analyzed using the
Helmholtz equation with periodic azimuthal boundary

conditions.22 It is observed that the modes inner caustic,
Rc, decreases in relation to a decrease in mode wavelength.
This is a manifestation of the conservation of angular
momentum for these modes, all with the same azimuthal
symmetry order mi and angular momentum L ¼ mih ¼
Rcℏk. Although these states are available and would produce
field profiles contained primarily in the high dielectric
region, they would not normally be significantly excited
using a tapered fiber. A more efficient way to couple to
these states would be, for instance, to adopt an end-fire
coupling approach by cutting out a portion of the high dielec-
tric region.

Applying the matrix order reduction technique, the matri-
ces for azimuthal orders 5 to 30 were produced and the state
space was determined. From the eigenvectors, the field pro-
files were computed and those states which are highly con-
tained in the bottle region have their wavelengths plotted in
Fig. 6. The lines between data points link states with the
same general mode profiles. As the azimuthal order is
reduced, the wavelength associated within a mode class
increases as well as the field’s extent into the cylindrical
dielectric region. The “cut-off” of the modes results when
the state is converted into a mode that extends the full
axial height of the dielectric structure. For example,
Fig. 7 shows the mode profile for the fundamental state
for several azimuthal orders. As the azimuthal order is
decreased (wavelength increased), the state extends further
into the cylindrical dielectric region. At azimuthal order
of 4, the fundamental state extends the full axial range
and is no longer considered as confined to the bottle dielec-
tric region.

The solid light blue line (top most line in figure) in Fig. 6
is produced by considering the fundamental mode in the

Fig. 5 Mode profiles for six eigen-states with azimuthal order 22. Although the mode profiles are complicated in appearance, they all extend the full
axial length and penetrate below the bottle region into the uniform dielectric cylinder. The inner caustic, Rc , is directly related to the mode wave-
length and is a manifestation of angular momentum conservation. Top three profiles display a symmetric symmetry while the lower three states are
anti-symmetric with respect to the center line.
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geometrical regime, R0Z0 geometrical. Based on the circum-
ference, C, of the bottle resonator and azimuthal mode order,
the free-space wavelengths that are plotted where calculated
from λ ¼ CnSi∕mi. Good agreement between geometrical
and wave optics is observed when the wavelength is small
as is the general trend in the traces shown in Fig. 6. The
ratio of the R0Z0 FB-computed wavelength to the R0Z0 geo-
metrical wavelength multiplied by the index of refraction of
silicon gives the R0Z0 mode’s effective index.

The effect of reducing the amplitude of the Gaussian pro-
file making up the bottle resonator region is shown in Fig. 8
for the mode with azimuthal order of 22. As the amplitude
decreases, the modes become less and less confined and
extend further into the solid dielectric region. At sufficiently
low amplitude, the mode may be cut-off and extend the full
axial direction. The figure further shows that by adjusting the

amplitude, the wavelength of the fundamental mode can be
tuned to that of 1.55 μm. A similar type of curve can be gen-
erated for the other azimuthal mode orders and through a
combination of selecting the amplitude and σ of the
Gaussian profile, the wavelength and number of bottle
modes can be adjusted.

The multimode nature of the bottle confined states per-
mits the specification of two types of free-spectral
ranges;23–26 wavelength spacing of similar states with adja-
cent azimuthal order; and wavelength spacing of adjacent
modes within an azimuthal order. Figure 9 shows the
free-spectral ranges computed for the fundamental mode,
R0Z0, plotted on a log–log trace. The solid black line is

Fig. 6 Plot the bottle confined mode wavelengths versus the azimu-
thal mode order. Cut-off occurs for modes as the azimuthal order is
reduced. The solid light blue line (top) represents a wavelength of fun-
damental whispering-gallery modes determined using geometrical
optics considerations. Good agreement is observed in the high rota-
tional order range as geometrical and wave optics are in better agree-
ment when the wavelength is small.

Fig. 7 Intensity of the fundamental mode at various azimuthal orders. As the azimuthal order is reduced, the field extends further into the dielectric.
At cut-off, the mode extends the full axial direction and is no longer considered as a bottle resonator state.

Fig. 8 The effect of reducing the amplitude of the Gaussian function
that defines the bottle resonator region for the modes with azimuthal
order of 22 is plotted. The amplitude of 0.5 corresponds to the ampli-
tude used in previous computations. As the amplitude is decreased,
states are forced to extend further into the solid dielectric region and
eventually are cut-off as the bottle can no longer confine the mode.
Below cut-off, the state extends the full axial direction.
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the free-spectral range computed using geometrical optics for
the R0Z0 mode. For the Gaussian bottle parameters chosen,
the FB analysis indicates that both free-spectral ranges can
be several hundred nanometers.

5 Hollow Silicon Bottle Resonator
The demonstration of hollow core rolled up semiconductor
structures can be traced to the early work reported by Prinz
et al.27,28 The initial structures were designed in the nanome-
ter scale diameter regime and produced by allowing the
strain mismatch in the freed layers to provide a means of
rolling the sheet into a hollow structure. The technique
has been extended into the micron-scale optical domain

by increasing the diameter of the hollow tubes and
through the utilization of semiconductor materials common
employed in integrated optic devices.29,30 A great deal of
effort is directed toward the determination of the modal prop-
erties that may circulate the circumference of the hollow
tube.31,32 In this section of the article, the dependence of
the wavelength of the fundamental mode, azimuthal order
22, with respect to the inner radius of the air-filled hollow
silicon bottle resonator is examined. The hollow internal
region provides an access port for fluid flow33,34 and for
mechanical positioning.35 The Gaussian shape bottle resona-
tor region is retained in the analysis and the presence of an
inner radius equal to 1.75 μm completely removes the sup-
porting cylindrical region. Figure 10 is produced by modi-
fying the dielectric profile, recomputing the inverse
dielectric expansion coefficients and then computing the
eigenvalues for the fundamental mode of azimuthal order
22. The wavelength of the mode is plotted versus hollow
core radius. The inner air region starts to influence the
mode’s wavelength (and profile) when the radius of the hol-
low region approaches and exceeds that of the original
mode’s inner caustic. The trace was produced using 75
Bessel and 39 axial indices. The fluctuations on the trace
(amplified here due to the small y axis range) represent
<1% of the wavelength value.

6 Conclusion
In this work, we have examined the steady states that are
available in a micro-optic silicon optical bottle resonator.
The structures are examined using a novel FB basis function
set to expand the inverse dielectric and field components in
order to cast Maxwell’s wave equations into an eigenvalue
formulation. The expressions are provided in a general form
and may be applied to solving for steady states in a large
number of cylindrically symmetric dielectric configurations.
Examination of the eigenvalue space and dominant field
component of the associated eigenvector facilitates the deter-
mination of bottle confined states and additional extended
states. For the parameters of the Gaussian bottle resonator
presented, four bottle confined eigen-states are observed
when the azimuthal mode order is 22. As the azimuthal
order is reduced, the modal wavelengths increase and the
extention of the field profile into the high dielectric region
increases. A cut-off is defined when the bottle state trans-
forms from one confined to the Gaussian region to one
that extends the full axial direction. A hollow variation of
the bottle resonator is examined and it is shown that the fun-
damental mode is unaltered by the air region provided the
modal field remains confined to the high dielectric region.
The analysis technique developed here along with the
micro-optic bottle resonator presented in silicon indicates
a rich variety of confined and extended states. Variations
on the structure parameters promise interesting micro-optical
components and devices on the Silicon platform.

Appendix A: Generating Expressions
for the Matrix Elements of Eq. (11)
When the orthogonality integration is applied to Eqs. (8)–
(10), the resulting expressions written below are obtained.
The indices ðp�

i ; m
�
i ; n

�
i Þ relate to the application of the com-

plex conjugate of a basis function on the right and left hand
side prior to integration of the cylindrical domain.

Fig. 9 Free-spectral range for the fundamental mode with azimuthal
order 22. Red (line with squares) indicates FSR of the fundamental
mode relative to adjacent azimuthal order. Green (line with triangles)
represents FSR for an azimuthal order between fundamental and next
higher order mode (R0Z 1). Black (line with diamonds) represents geo-
metrically computed FSR of the fundamental mode relative to adja-
cent azimuthal order.

Fig. 10 Wavelength of the fundamental mode with azimuthal order 22
plotted as a function of the inner hollow radius. Fluctuation (<1%) in
data represents the numerical error in the eigen-mode solver when
using 75 Bessel and 39 axial indices. Results indicate that the
mode’s wavelength is insensitive to hollow regions with radius
<1.2 μm. When the radius starts to affect the mode’s profile, the
field adjusts to the reduced index value in the central region and shifts
to lower wavelength. At an inner radius of 1.75 μm, the entire central
cylindrical support has been replaced with low dielectric and only the
Gaussian bottle remains.
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For each of the nine matrix element expressions, the
conditions on the indices to produce nonzero matrix ele-
ments are given within the k k bracket. These conditions
arise from the orthogonality properties of the exponential
portions of the basis functions. The jpimini indicates the
matrix element based on the LHS field indices. The ortho-
gonality condition of the Bessel function integrals on the
LHS is not met and produces finite values. The resulting
integrals involve the product of three Bessel functions, indi-
cated as ðS; T; U; VÞ in Eqs. (14) to (22) and are given
below:
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V1ðp1; p2; p3Þ ¼
Z

1

0

J1ðρp1
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xÞJoðρp3
xÞxdx (29)

The integrals are evaluated over the normalized range x ¼
r
R and involve various combinations of the zero and first-
order Bessel functions as well as different powers of x.
These integrals, written in the form provided, can be evalu-
ated numerically and the results stored in look-up tables.
Since the integrals are independent of the dielectric profile
and particular field components required, they only need
to be calculated once and can be used in the steady state
determination using the expressions presented here for
any dielectric profile where the radial direction is expanded
in the lowest order Bessel series.

Appendix B: Eigenvector Space for
Fundamental Mode of Azimuthal Order 22
Figure 11 shows a plot for the real and imaginary parts of the
expansion coefficients for the Hz field component for the
fundamental azimuthal mode of order 22 and wavelength
at 1.707 μm. The expansion coefficients are collected in
terms of axial index nz as labeled along the x axis of the
plot. Within each of these are collected the Bessel indices
in increasing order up to pz ¼ 75. Such a figure shows
that the eigenvector space is well converged.
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Fig. 11 Plots of the real and imaginary parts of the eigenvector
expansion coefficients for the Hz field component of the fundamental
mode with azimuthal order 22. The x axis labeling corresponds to the
z axis index nz and within each axial index is plotted the Bessel index
in increasing order up to pz ¼ 75. The real parts are an order of mag-
nitude larger than the imaginary parts.
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