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Abstract. We propose the diffusion-based enhanced covariance intersection cooperative space object tracking
(DeCiSpOT) filter. The main advantage of the proposed DeCiSpOT algorithm is that it can balance the computa-
tional complexity and communication requirements between different sensors as well as improve track accuracy
when measurements do not exist or are of low accuracy. Instead of using the standard covariance intersection in
the diffusion step, the enhanced diffusion strategy integrates the 0-1 weighting covariance intersection strategy
and the iterative covariance intersection strategy. The proposed DeCiSpOT algorithm also uses the global near-
est neighbor and probabilistic data association for multiple space object tracking. Two typical scenarios including
cooperative single and multiple space object tracking are used to demonstrate the performance of the proposed
DeCiSpOT filter. Using simulated ground-based electro-optical (EO) measurements for multiple resident space
objects and multiple distributed EO sensors, the DeCiSpOT archived results comparable to an optimal central-
ized approach. The results demonstrate that the DeCiSpOT is effective for space object tracking problem with
results close to the optimal centralized cubature Kalman filter. © 2019 Society of Photo-Optical instrumentation Engineers (SPIE)
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1 Introduction

Multiple ground and space sensors are currently dedicated to
achieving space situational awareness (SSA) due to the vast
horizons and limited sensing field of view.' Traditionally,
multiple sensors with limited bandwidth and power were
not designed to cooperatively track space objects. With the
advent of advanced sensor designs, deployment of more sen-
sors, and increased communications capabilities, cooperative
space object tracking (SpOT) is possible. Cooperative SpOT
can be used for long-term or time-sensitive high-value SpOT
and fast space event detection. SpOT and SSA*™* are impor-
tant to many space missions, such as global navigation, wire-
less communications, and distributed multimedia; which
has received considerable attention in recent years.
However, most of the work on SpOT focuses on single-sen-
sor—single-object tracking. In this paper, multiple sensor-
based space object tracking is developed for decentralized
information cooperation. Due to the well-known advantages
of decentralized processing (e.g., robustness, simplicity, and
efficiency), distributed space object tracking using multiple
sensors is preferred. Distributed cooperative tracking has
been intensively researched and there are many strategies,
such as gossip,” consensus,® and diffusion.” Recently, the
consensus-based SpOT has been proposed to use the infor-
mation from multiple sensors.* Specifically, the information
weighted consensus strategy® is used due to its simplicity to
implement and its high accuracy. One practical issue for the
diffusion-based cooperative SpOT algorithm is that the com-
munication resources in the sensor network are limited.
Hence, a communication efficient, cooperative SpOT algo-
rithm is desired. In general, consensus-based algorithms
require a large number of iterations to achieve agreement.
In addition, there are many sensors within the network
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that might not have observations (naive nodes) for SSA
due to various constraints. Hence, we propose using the
enhanced diffusion strategy for the distributed space object
tracking which considers the existence of naive nodes and
communications constraints for SSA.

This paper details diffusion-based SpOT using multiple
sensors for scenarios with single and multiple space objects.
The primary goal is maintaining existing tracks, where track
initialization”!” and termination are not considered in this
paper. To associate the measurement and track, the global
nearest neighbor (GNN) and joint probabilistic data associ-
ation (JPDA)'! algorithms are employed. Due to the essential
nonlinearity of the space object tracking problem, nonlinear
filters such as the unscented Kalman filter,'””> cubature
Kalman filter (CKF),'*!* and sparse-grid quadrature filter'>-'®
are considered, where the cubature information filter (CIF) is
demonstrated in this paper.

The remainder of the paper is organized as follows. The
space object tracking problem using ground electro-optical
(EO) sensors is introduced in Sec. 2. Section 3 introduces
the centralized multiple sensor estimation for space object
tracking. Section 4 describes a decentralized approach
using the proposed diffusion-based SpOT algorithm. Two
multiple sensor-based space object tracking scenarios are
provided in Sec. 5 to illustrate the improved performance
of the proposed algorithm. Section 6 gives the concluding
remarks.

2 Background of Space Object Tracking

SpOT is considered in this paper using only ground EO sen-
sors; however, the methods could be utilized by any SSA
system using space object detections from different sensor
types located on the ground or in space. This section reviews
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the space object motion equation and an EO sensor measure-
ment equation and the system constraints.

2.1 Dynamic Object Motion Equation

The dynamic equation of a near-earth space object is given
by Refs. 17 and 18

i‘:—%rJranJrv, (1)

where r = [x, y, z]7 is the position of the space object in the
inertial coordinate frame (I-J-K), p is the standard gravita-
tional constant, the range is r = /x> +y? + 72, v is the
white Gaussian process noise, and a,, corresponds to the
J, perturbations

3 Rp\? u
asz‘z’Z(r) =

2 2 2 T
T T N [

where Rg is the radius of the Earth and J, is the constant.

Note that in this paper, Eq. (1) does not consider drag and
solar radiation pressure for simplicity. But these parameters
can be incorporated when the mass and surface area of the
space object are given.

W

Equator

2.2 EO Sensor Measurement Equation

The ground EO sensor measurement is described as

az = tan~" (p,/p,) + ng;
{ 3)

el = tan™! (pu/ 7 +p%) + gy’

where the azimuth (az), the elevation (e/), and the range
P = [PusPe> pPu]! can be measured by the optical sensor on
the ground with respect to the local observer coordinate
system, (1 — € —n; “up, east, and north”). Note that the
covariance of measurement noise is assumed to be
diag([1 arcsec, 1 arcsec]?).

The geometry of the observation model is shown in Fig. 1.
The range can be related to the position vector in the inertial
frame (I-J-K) by the coordinate transformation given as

Pu cosA 0 sinAi cos@ sinf O
Pe | = 0 1 0 —sind cosf O
Pn —sin4 0 cos 4l 0 0 1
x— ||R|| cos 4 cos 0
X |y—|R|cosAsinf |, 4)
z—||R||sin 2

where ||R|| = 6378.1363 km is the Earth radius; A and 6
are the latitude and local sidereal time of the observer,
respectively; and n,, and n,, are white Gaussian measure-
ment noise.

Measurements from the i’th EO sensor will be unavail-
able when the line-of-sight path between the sensor and
the space object is blocked by the Earth. The condition of

Observer’s meridian plane

of the sensor

Space object

Fig. 1 lllustration of the observing geometry.
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Ground EO

w
=]

u
PAN

2R\
N

v
Earth’s center

Fig. 2 lllustration of the dark background check.

the Earth blockage is examined between the distance func-
tion D and the radius of the Earth R = ||R||.'® If there exists
9 € [0,1] such that Dy(i) < Rg, where

Dy(i)
= J(1=8)x;-+ 85+ [(1= )i+ 85+ (1-8)z-+ 93P
®)

then the measurement from the i’th sensor to the space object
will be unavailable. The minimum of Dy(i) is achieved at
9 = 9%, where 9* is given as

xi(x = x;) +yi(y = y;) +z(z = z) .

Y T R 0t G-a)

(6)

Thus, the system first examines whether 9* € [0,1] and
then checks the Earth blockage condition Dy: (i) < Rg.

Another geometric constraint for the EO sensor is that the
dark background (night) is required. To satisfy a dark back-
ground, the angle (as shown in Fig. 2) between the vector
from the Earth’s center to the sensor and the vector from
the Earth’s center to the Sun should be greater than
102 deg.”

With the sensor measurements and geometrical checks, a
cooperative tracking method can be coordinated using dis-
tributed sensors. To demonstrate the advantages of the
decentralized space object tracking approach, a cooperative
centralized information filter approach is first presented.

3 Centralized Cooperative Space Object Tracking
SpOT can be achieved for single and multiple objects.

3.1 Single Space Object Tracking

Consider a class of nonlinear discrete-time dynamical sys-
tems

X = f(Xp_1) + Vi, @)
7 = hj(xp) +ny, ®)

where x;, € R"; z; ; € R". v;_; and n,; are independent
white Gaussian process noise and measurement noise with
covariance Q,_; and Ry ;, respectively. z, ; is the measure-
ment by the j’th sensor, j =1, ---, Ny, and N, is the num-
ber of sensors.

For centralized fusion methods, the information filter is
commonly used due to its simplicity and robustness for
multiple sensor applications.”” For the information filter,
the information state and the information matrix at the
time k — 1 are defined by .)A'k_”k_l = Pk_—11|k—1§(k—l\k:1 and
Yicije-1 = Pl:—ll\k—l’ respectively. The system state X;_j
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and covariance Py_j;-; can be obtained by
Xi_ike1 = P y and P =Y;! respec-
Cje—1k—1 Cr—1lk=1Yk=1]k=1 AN By yp—y = Xy > TESP
tively. In this paper, the CIF is used and it contains the pre-
diction and update steps.

3.1.1 Cubature information filter predict step

The information state )AYk‘k_l and the information matrix
Yijk—1 can be predicted as

Vi1 = P Ragper )
Yot = Py (10)

The predicted state and the associated covariance matrix
at time k can be obtained as

2n
Xpfk—1 = Z Wif (&), an
P

2n
Pk\k—l = Z Wi[f(gk,i) - ﬁk|k—l][f(§k,i) - §k|k—l]T + Qk’
i=1
12)

where &, ; is the transformed points from the covariance
decomposition

P = Sk—1|k—1SkT_1|k—1’ (13)

i = Sicipt¥i + Rcipets (14)
where W; and 7y; can be obtained via the cubature rule with
W,=1/2n) i=1,---,2n, (15)

ne; i=1,---,n
Yi:{\/_

—/ne_, i=n+1--2n (16)

and e; is the unit vector in R” with the i’th element being 1.

3.1.2 Cubature information filter update step

For multiple sensor estimation, the information state and the
information matrix can be updated by Refs. 20 and 21

Nn
Yijk = Y1 + Z iy, a7
=
N
Y = Yip-1 + Zlk,ﬁ (13)
=

where the information state contribution i ; and the informa-
tion matrix contribution I, ; of the j’th sensor are given by
Ref. 21

i = (Pk\k—l)_lpk\k—l.xz,RZ,}{(Zk.j —2))

+ (Prpetone,) [(Premt) ™ T Repmt 3 19)
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Lej = (Pumt) ™ Prge e, RO (Pt z,) T [(Pra—t) 71
(20)

where R, ; is the covariance of the measurement noise cor-
responding to the j’th measurement equation and

2n
L= Z Wih;(&i). 2D
izl
2n
Pkt ng, = Z Wi (Chi = Xp—1) [ (Crei) — 2 - (22)
i=1

Note that & ; are the transformed points obtained from the
covariance decomposition:

Py = Sk\k—ls;{\k_p (23)
&i = Sk\k—ﬂi + Xt - (24)

Remark 3.1: From the above cubature information filter-
ing algorithm, it can be seen that the local information con-
tributions of iy ; and I ; are only computed at sensor j for the
total information contribution. Therefore, the information
filter is computationally more efficient and more suitable
for decentralized sensor estimation than the conventional
Kalman filter.

3.2 Multiple Space Object Tracking

For the multiple space object tracking problem, the measure-
ment-to-track association has to resolve which observation is
assigned to which orbit. Figure 3 highlights that a gating
region around a measurement is used to determine which
measurements are valid before providing the measurement
to the filter. In this paper, the GNN and JPDA algorithms
are used to determine which measurements are associated
with current tracks.

Before applying the GNN and JPDA algorithms, the gat-
ing procedure can be performed over the measurements in
order to reduce the computational time, complexity, and
the number of valid measurements. The typical ellipsoidal
gate region is given as

[Z;cn - ii\k_l}TM_l [221 - illqk_]] < ’72’ (25)

where M is the covariance matrix corresponding to
z —ii‘k_l and 7 is the threshold. Note that z}' is the

m’th measurement at time k and if{‘ 4 is the predicted meas-
urement by the I’th track.

To use the GNN algorithm, the distance is defined as
dp = 2] =2y, ||"M7'[z =%, |]. For each measure-
ment from the sensor observation zj', the goal of the GNN
algorithm is to choose assignments to minimize the distance.
When a single measurement is gated to a single track, it is
easy to associate the measurement and the track. For closely
spaced targets, it is very likely that multiple measurements
fall in a single gate. Simply assigning observations to tracks
using minimization of distance could give a wrong assign-
ment solution.”” Hence, the validated matrix D should be
constructed and used. The validated matrix with n measure-
ments and p tracks is shown as

dll d12 d13 e dlp
le d22 d23 e d2p

D= . . . (26)
dnl dn2 dn3 e dnp

Recall that, for d,,;, “m” is used to denote the m’th meas-
urement and “/”” denotes the track. The goal of the GNN is to
find the assignment solution which minimizes the summed
total distance using the validated matrix. In this paper, the
Munkres algorithm® is used to find the measurement to
track association pairs based on the validation matrix.

Remark 3.2: When the association pair is determined,
the information state contribution i ; and the information
matrix contribution I ; of the j’th sensor can be obtained
by Eqgs. (19) and (20), respectively.

Similarly, the probabilistic data association algorithm can
be used by each sensor to solve the measurement-to-track
association problem. For convenience, DA™! is used to
denote the event that the [’th space object track is associated
with the m’th measurement. Under this specific association,
the innovation Z;' ' and innovation covariance St are given as

B =2~ (R, ). 27)

S = (Pl ) (Pl )P

Wi-1) " Fhik—1xz T R, (28)

!
klk—=1,xz

where zj' is the m’th measurement, the superscript “I”
denotes the [’th track. Assume the probability that the
data association DA™ is denoted as ! and the probability
that there is no measurement corresponding to the /’th space
object is B%/. The update procedure using the JPDA filter
(JPDAF) for the I’th space object can be written as

» Nonlinear filter —»

—> Tracks —¢
Gating and data =
association
—>» Measurements —T

Fig. 3 The flowchart of the multiple space object tracking problem.

Optical Engineering

041607-4

April 2019 « Vol. 58(4)



Jia et al.:

X = Ko T KLl (29)
Pl =P — (1= OKSIK] + K[ PIK], (30)
where
Ki - Pllc|k lxz(sfc)_l (3])
M
U= Do = v = (L= PN ), (2)
m=1
M
=> iz, (33)
m=1
M
ZBMW#%Wﬂ—%Mﬂ (34)
m=1

and M is the number of validated measurements after gating.
pm!is given as

)

I Vi —1.--- M
i 1—PDPG+Z;VLI i M ’ ’ 35
ﬁ - 1-PpP; m= 0 ) ( )

1=PpPg+y M L7

where Pp and P are the space object detection probability
and gate probability, respectively. In addition,

N(z", zk‘k -SHPp
A

Lm,l —

(36)

Note that ii‘ 1 18 the predicted measurement. 4 is the den-
sity of the spatial Poisson process that models the clutter.

The information form of JPDA-based filtering algorithm
has been derived.** Due to the association uncertainty,
Egs. (17) and (18) are revised. For convenience, we list
these equations as follows:**

Incremental update

Exchange local data
update local estimation

Diffusion-based cooperative space object tracking

V)l 1 9)1
% +> 1 XL+ ) (
Kk = k|k1 E:k} k\k1k|k1 E, k.j

LR, 11)} 37)
Y = Yio 1+ZGW (38)
where
G = Yi_, KL {1 =82S, - P!
— (Ki ) Yo K (K ) Y - (39)

In summary, thgl information shared by each sensor
1o+l 1l
includes I, e 1 X1 and G K

4 Diffusion-Based Cooperative Space Object
Tracking

The consensus strategy has been used to design the distrib-
uted space object tracking algorithm.**> One requirement to
use the consensus strategy is sufficient communication
between different sensors. However, communication resour-
ces are limited in space tracking applications. Hence, it is
necessary to design a communication efficient, SpOT algo-
rithm based on decentralized approaches. In this paper, the
diffusion-based strategy is utilized for the decentralized
SpOT. The diffusion strategy is typically used to solve linear
distributed estimation problems. Although the linearization
technique can be used to extend the diffusion strategy to
solve the nonlinear estimation problem, the accuracy of
the linearization is limited. Hence, the cubature rule is pro-
posed to extend the traditional diffusion strategy. As shown
in Fig. 4, there are two steps of the diffusion strategy-based
distributed nonlinear filters, which are the incremental
update and diffusion update. For the incremental update,
at each time step, each agent will communicate with their
neighbors the information state and information matrix to
obtain an intermediate estimated result of the system state.
The diffusion update is then conducted based on the

Diffusion update

Exchange and update local estimations

Fig. 4 Diffusion strategy based distributed nonlinear filter update at node 1.

Optical Engineering

041607-5

April 2019 « Vol. 58(4)



Jia et al.: Diffusion-based cooperative space object tracking

intermediate estimate given by the incremental update step.’
Note that the symbol “¥,,” with i =1, ---,4 in Fig. 4
denotes the information shared by the i’th sensor in the dif-
fusion update step. The main reason to use the diffusion strat-
egy for distributed space object tracking is that it only
requires two information transmissions between different
sensors. Hence, it can save communication resources in dis-
tributed and SpOT.

Rather than using the conventional diffusion strategy, we
propose to use the enhanced diffusion strategy, which inte-
grates 0-1 weighting covariance intersection and iterative
covariance intersection (ICI) strategies. For convenience,
the conventional diffusion strategy is described next with
the proposed ICI strategy as follows.

4.1 Conventional Diffusion Strategy

The conventional diffusion strategy includes two steps: the
incremental update and the diffusion update.’

4.1.1 Incremental update

In the incremental update step, each sensor will broadcast its
information to neighbors. If the GNN algorithm is used, for
every sensor j, after receiving the information from neigh-
bors, the information state and covariance are obtained as

Vies = Yoy + Dk (40)
J'en;
)
Vi = Yo, + ZI,”,, (41)
J EN

where N is the neighborhood set of sensor j, i ; is the infor-
mation state contribution, and I j is the information matrix
contribution.

Note that if the JPDA algorithm is used, the state and the
information covariance are obtained by Eqs. (37)—(39).

4.1.2 Diffusion update

In the diffusion update step, the intermediate state estimation
can be updated as

K= Ci & 42)

J EN_

Note that the welghtlng coefficients C; ; should satisfy
the constraint Z] >, cjri =1 where N is the neighborhood
set of sensor j, including itself.

There are many ways to choose the weighting coeffi-
cients. In this paper, the covariance intersection algorithm
is employed due to its simplicity to determine the weighting
coefficients. Note that the covariance intersection algorithm
does not consider the cross-correlation between different
sensor estimations, which may slightly affect the estimation
accuracy. However, in the SpOT applications, it provides
satisfactory results. For convenience, we omit the superscript
“l” and subscript “k” in the following discussion for
each track.

The fused state can be obtained via the covariance inter-
section algorithm as*®

Optical Engineering

041607-6

P)7'% = wr(Py)7'x0, (43)

where the covariance P; is given as?®

)™ = a7 (44)

Jj'eN;

Note that x;» and P; are the state estimation given by the

Jth sensor and the weights are

- 1/tr( ])
T 1 r(Py)”

]EN

(45)

where that “tr(-)” is the trace operator.
Using Egs. (43)—(45), xk in Eq. (42) can be updated.
Then, the state can be predlcted according to Eqgs. (11)—(16).

4.2 Enhanced Diffusion Strategy

The proposed enhanced diffusion strategy using covariance
intersection includes two steps: the incremental update and
the diffusion update. The incremental update is the same as
in the conventional diffusion strategy, but the diffusion
update is revised with the consideration of naive sensors
(without measurement) and communications resources.
Due to the variation of the geometric relations between sen-
sors, the Sun, the Earth, and the space object; there are some
sensors without any measurements. For the sensors without
measurements, the estimation is predicted from the previous
state estimation. Due to the lack of observations, the estima-
tion accuracy of these sensors can be very low. When there
are no measurements of low-accuracy measurements, the tra-
ditional diffusion strategy using the covariance intersection
may degrade or fail. To overcome this problem, rather than
use Eqs. (43)—(45) to calculate the weight, a 0-1 weighting
strategy is utilized. For the j'’th sensor, the weight can be
calculated as

o 1 lf j/ = mj/ﬁj
@j'j = {0 otherwise ’ (46)

S minj/ tr(Pj/) j/ (S Nj

The 0-1 weighting strategy can overcome or mitigate the
problem of lacking observations for some sensors. For the 0-
1 weighting strategy, the fusion result is the estimation of the
sensor with minimum uncertainty. Note that the trace of the
covariance matrix is used to measure the uncertainty of the
estimation. Specifically, the trace of the covariance matrix
denotes the overall expected mean squared error.>’

In general, the sensor estimation with observation gives
better estimation result than the sensor estimation without
measurement. By using 0-1 weighting strategy, only the
best estimation is preserved. The information of other sen-
sors is discarded. Hence, the effect of the sensor without
observations is overcome or mitigated.

For the covariance intersection, the drawback of the 0-1
weighting strategy is that only the state estimation with min-
imal trace of the covariance is used and the information from
other sensors in the diffusion update step will not be used. To
improve the performance, the conventional weighting is

where m
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combined with the 0-1 weighting to calculate the final esti-
mate. For convenience, we denote:

Strategy 1: the state and covariance given by the conyen-
tional weighting strategy are denoted by x( ) and P

Strategy 2: the state and covariance %wen by the 0 1
weighting strategy are denoted by X, and P

The proposed diffusion strategy enhances the covariance
intersection strategy by integrating these two strategies. The
fused state X, ; and covariance P, ; are given as
(2
I

(X, P ) = { 47

According to Eq. (47), the final estimation is the better
one between the estimation given by strategy 1 and strategy
2. The strategy 2 overcomes or mitigates the effect of the lack
of observations. If strategy 1 is strongly affected by the lack
of observations problem, the performance of strategy 1 will
degrade. In this case, strategy 2 will be used. Hence, Eq. (47)
can also overcome or mitigate the lack of observations
problem.

In addition, we propose to use the ICI in the diffusion
step. For convenience, we name the proposed filter as the
diffusion-based filter (D) with the enhanced iterative covari-
ance intersection (EICI) strategy (D-EICI). A typical cycle of
D-EICI is summarized in Fig. 5. After the incremental
update, the enhanced covariance intersection solution for

|

Incremental

update

|

' |
Diffusion update Diffusion update

| P! P! I
| via covariance via covariance

intersection intersection |

I strategy 1 strategy 2 |

: |

| inimal trace o e—

covariance |

' |

: |

I

| Diffusion updated |

| state and covariance [

D A 4

Iteration number No

reached?

Updated state and
covariance

Fig. 5 The flowchart of the diffusion-based EICI filter.
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the diffusion update is determined. The diffusion update
result is determined by either the conventional covariance
intersection or covariance intersection with 0-1 weighting
strategy, according to Eq. (47). In addition, multiple itera-
tions can be used in the diffusion step. The performance
is improved by repeating the enhanced covariance intersec-
tion strategy multiple times. The improvement is a result that
information exchange is more sufficient by using multiple
time information exchanges between neighbors for distrib-
uted estimation.

5 Numerical Experiments

In order to test the performance of the proposed diffusion-
based enhanced iterative covariance intersection (D-EICI) fil-
ter for space object tracking (DeCiSpOT), two scenarios are
provided. One is for cooperative single space object tracking
and the second is for cooperative multiple space object
tracking. In both scenarios, 10 ground EO sensors are
used. Locations of these sensors are shown in Table 1.
Note that the location is represented by latitude and longitude.

Table 1 EO sensor locations.

Sensor index Location
1 42.62°N, 71.49°W
2 52.7°N 174.1°E
3 30.57°N 86.22°E
4 70.37°N 31.13°E
5 32.82°N 106.66°W
6 7.41°S 72.45°E
7 20.71°N 156.26°W
8 8.71°N 167.73°E
9 37.17°N 5.62°W
Sensor network
80 1
60 [ 1
40 + 1
5 201 / .
(0]
Z
o Of 1
©
2
® 20 .
-l
40 + ]
-60 §
-80 §
-150 -100 -50 0 50 100 150

Longitude (deg)

Fig. 6 Topology of the EO space object sensing network.
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These sensors cooperatively track Geosynchronous Earth
Orbit (GEO) objects. For the distributed SpOT, the topology
of the network should be given. In the simulation, the topol-
ogy of the network is shown in Fig. 6. Note that the symbol
“x” denotes the sensor and the solid line denotes the link
between different sensors.

5.1 Single GEO Object Tracking

A GEO object is used and the initial state of the object is
X0 = [(X0pos)” (Xove1)]", Where Xg 05 = [42261.2813 km,
4882.9648 km, 1344.2211 km]” and xq ,; =[—0.3682km/s,
2.9286km/s,0.8005km/s]”. The initial covariance is given
by Py = diag([100 km?, 100 km?, 100 km?,0.01 km?/s?,
0.01 km?/s%,0.01 km?/s?]). The adaptive step size Runge—
Kutta method is used to propagate the orbit [Eq. (1)] and the
measurement period is 60 s. Five different filters, including
(1) the centralized cubature Kalman filter, (2) the diffusion-
based filter with enhanced covariance intersection strategy
(D-ECI), which is based on the integration of strategy 1
and strategy 2, (3) the D-EICI, (4) the diffusion-based filter
with covariance intersection filter using plain 0-1 weighting
strategy (D-CI), and (5) the diffusion-based filter with ICI
using plain 0-1 weighting strategy (D-ICI), are tested.

Fifty Monte Carlo runs are conducted, and the root mean
square error (RMSE) for the position and velocity are shown
in Figs. 7 and 8, respectively. Note that the results from the
traditional diffusion-based filters are not shown since they do
not consider the naive node. In addition, due to the paper
limitations, only the result from the first sensor is shown
and the results of other sensors follow the same trend.
From Figs. 7 and 8, it can be seen that the performance
of all diffusion-based filters is improved by increasing the
number of information exchanges. Note that “N” is used
to denote the number of information exchanges in Figs. 7
and 8. Specifically, the performance of all diffusion-based
filters with 10 diffusion update iterations have better perfor-
mance than filters with a single diffusion update. However,
the information exchange in the network converges to a suf-
ficient value with the increasing of the number of informa-
tion exchanges.

In addition, the D-EICI has better performance than the
D-ICI, which demonstrates the effectiveness of the proposed

, m— C-CKF |
10 D-ECI

m— D_EICI (N=10)
D-EICI (N=20)
- — Dl

= =D.ICI (N=10)

0 20 40 60 80 100
Time (min)

Fig. 7 RMSE position error for the centralized and diffusion filters.
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Fig. 8 RMSE velocity error for the centralized and diffusion filters.

EICT strategy. One thing to emphasize is that the proposed
D-EICI is flexible in terms of communication resources.
When the communication resources are sufficient, the num-
ber of information exchanges can be large. When the com-
munication resources are limited, only two information
exchanges are required for a satisfactory performance.

5.2 Multiple GEO Object Tracking

To evaluate the performance of the multiple space object
tracking using the proposed diffusion algorithms in
Sec. 4, five space objects are used. The trajectories of the
five space objects are shown in Fig. 9 and their initial states
are given in Table 2. The initial covariance is the same as Py
in scenario 1. The observations and tracks are associated by
the GNN or JPDA algorithm described in Sec. 4. Each sensor
updates the state of multiple space objects and shared the
information with neighbors by the enhanced diffusion strat-
egy. Note that in the simulation, ps; = 0.99, which means
99% validation region is used for the measurement and
the gating threshold is 7 = 9.2. The clutter is generated uni-
formly with the number of clutter points, which are obtained
from a Poisson distribution with spatial density 10~ /km? in
a cuboid. The center of the cuboid is assumed to be the

Trajectory 1
==+ - - Trajectory 2

Trajectory 3
500 Trojectory 4
> Trajectory 5
E o
N J\
-500 ~T -
— \‘
-1000 - 5,,,,,,,,, \‘\
6 \‘\ 1\
>~ < |
. - I 3 4
S ) |
2 | >
. -
S //
y (km) 0 o o

Fig. 9 The trajectories of the five space objects.
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Table 2 |Initial states of the five space objects.

Space object index Initial state

1 Xo = [41995.87 km, 3836.69 km, —21.42 km, —0.2802 km/s, 3.0614 km/s,0.00032 km/s]”
2 Xo = [41731.13 km, 6029.50 km, 10.28 km, —0.4398 km/s, 3.0431 km/s, —0.0016 km/s]”
3 Xo = [41730.10 km, 6223.09 km, 94.97 km, —0.4529 km/s, 3.0391 km/s, —0.0017 km/s]”
4 Xo = [41564.13 km, 7115.81 km, 22.22 km, —0.5189 km/s, 3.0303 km/s, —0.0006 km/s]”
5 Xo = [41518.91 km, 7392.15 km, 17.52 km, —0.5393 km/s, 3.0265 km/s, —0.0012 km/s]”

average value of positions of all five space objects.
The dimension size of the cuboid is given by
500 km X 500 km x 100 km. Note that “500 km” corre-
sponds to the in-track and cross-track direction and
“100 km” corresponds the radial direction. The detection
probability is assumed to be pp = 0.995.

Due to the variation of the geometry between the Sun, the
Earth, space objects, and sensors; the number of valid sensor
measurements for different space objects varies, as can be
seen from Fig. 10. In some cases, multiple sensors could
observe the same space object. Note that spikes in Fig. 10
are caused by imperfect detection of the measurement.
Similarly, the number of observation changes with time
for different sensors, as can be seen from Fig. 11. Note that
the upper spikes are caused by the clutter and the lower
spikes are caused by imperfect measurement detections.

Different filters, including the centralized and D-ECI filter
and corresponding iterative version (D-EICI) filter with
GNN and JPDA algorithms, are tested, which extend meth-
ods in consensus-based space object tracking. The optimal
subpattern assignment (OSPA)?® distance is used to measure
the quality of estimation. Fifty Monte Carlo runs are con-
ducted and the average OSPA distance is shown in
Fig. 12. It can be seen that the centralized CKF with the
JPDA algorithm has the best performance but the proposed
filter, the D-EICI, achieves performance close to the central-
ized method.

In addition, it can be seen that the D-EICI with multiple
information exchanges (10 times) has better performance
than the D-ECI without multiple information exchanges.
Note that for both D-EICI and D-ECI, the JPDA strategy
is used. Filters using the JPDA strategy have better perfor-
mance than those using the GNN strategy. In addition, the

I
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-------- The 2nd Sensor
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== == The 7th Sensor
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The number of observations
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Fig. 11 The number of observations for different sensors (1 to 10).
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Fig. 10 The number of valid sensors for different space objects
(1 to 5). Fig. 12 The average OSPA distance.
Optical Engineering 041607-9 April 2019 « Vol. 58(4)



Jia et al.: Diffusion-based cooperative space object tracking

centralized GNN-based filter has worse performance than the
filter using the JPDA strategy for this scenario.

Note that, it is possible to use the proposed algorithm with
variants of JPDA and GNN for different space object
tracking scenarios. The performance of the filter, however,
is problem dependent.

6 Conclusion

The D-EICI cooperative space object tracking (DeCiSpOT)
filter is proposed for distributed multiple sensor SpOT. Two
space object tracking scenarios are used to demonstrate the
effectiveness of the proposed DeCiSpOT to support SSA.
The paper demonstrates that satisfactory performance can
be achieved with the DeCiSpOT filter which balances the
communication resources and computational complexity,
especially in cases where measurements are obscured and/
or of low accuracy. When the communication resources
are limited, only two information exchanges are required
for sufficient performance. When the communication resour-
ces are available, a large number of information exchanges
can be used with the information filter method. For the
multiple space object tracking problem, the diffusion-based
nonlinear filtering framework accommodates the JPDA
and GNN algorithms used within. The diffusion-based
approaches show promising performance in single and multi-
ple space object tracking problems, which provides a solu-
tion for time-sensitive space object tracking tasks.

Future work would include the use of space object recog-
nition for measurement selection using the joint-belief
probabilistic data association filter,” multimodal informa-
tion from ground-based radar and EO sensors,>’ as well
as multidomain coordination between ground and space
sensors.’!
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