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ABSTRACT  

Super-resolution, structured illumination microscopy (SIM) is an ideal modality for imaging live cells due to its 
relatively high speed and low photon-induced damage to the cells. SIM consists of two generic components: (i) sample 
illumination by a sinusoidal pattern and (ii) computational reconstruction of a super-resolution image. The rate-limiting 
step in observing a super-resolution image in SIM is the reconstruction speed of the algorithm required to form a single 
image from as many as nine raw images. These reconstruction algorithms impose a significant computing burden due to 
a complex workflow and a large number of calculations requiring 10-300 seconds per image nullifying real-time 
imaging. In this mini-review, we show how the approaches we developed to improve Hessian-SIM algorithm 
reconstruction speed can be used to improve other SIM image reconstruction algorithms. These approaches, which 
included code improvement, conversion to the GPU environment, and use of cost-effective high-performance computers 
produce up to 500-fold increases in image reconstruction speed.  
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1. INTRODUCTION  
Super-resolution, structured illumination microscopy (SIM) is an ideal modality for imaging live cells due to its 
relatively high speed and low photon-induced damage to the cells in comparison to other super-resolution fluorescence 
microscopy techniques [2, 3].  Structured illumination microscopy and its variants thereof are based on the original 
wide-field design of Gustafsson [4]. SIM consists of two generic components: (i) sample illumination by a sinusoidal 
pattern and (ii), computational reconstruction of a super-resolution image [5].  Over the years, intensive research has 
focused on improving the hardware, the means of sample illumination, the algorithms to reconstruct images, and 
approaches to increase algorithm reconstruction speed [6-10].  The overarching goal of these combined efforts is to 
produce an imaging modality that produces super-resolution images in real-time with minimal artifacts [3, 11-14].   
 
Often the rate-limiting step in observing a super-resolution image in SIM is the reconstruction speed of the algorithm 
required to form a single image from as many as nine raw images [15, 16].  The speed of execution can be limited by 
either the code of the algorithms themselves or the computer hardware.  Most widely used approaches perform a Fourier 
transform of the captured images, then perform calculations in Fourier space and once this is done, an inverse Fourier 
transform is done to produce the super-resolution image.  These reconstruction algorithms impose a significant 
computing burden due to a complex workflow and a large number of calculations to produce the final image [17, 18].  
This requires several seconds (10-300 per image) which essentially nullifies real-time imaging [8, 19].  In addition, 
image reconstruction calculations must be performed with great care as artifacts can be introduced into the final images 
and this is further complicated by the motion of the cell or organelles during imaging [12, 17, 18, 20-22]. Finally, careful 
selection of hardware components must be done as these too can be rate limiting in algorithm execution.  
 
Until recently, most image reconstruction algorithms were executed on central processing units (CPUs), where 
instructions are executed serially.  In contrast, the execution of instructions within the graphics processing unit (GPU) 
environment is done in a massively parallel fashion and is 10- 100-fold faster [23-25].  Thus, and due to the heavy 
computing burden, it makes sense to reconstruct super-resolution images in the GPU environment.  This was first 
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demonstrated, albeit in a complex fashion using three cameras and multiple computers, by Markwirth et al. [26].  More 
recently, an improved algorithm that used a simplified workflow called Joint Space and Frequency Reconstruction SIM 
(JSFR-SIM) was developed [27].  While this algorithm is only 2-fold faster than the widely used Wiener SIM, the 
conversion of code to the GPU environment resulted in a 77-fold improvement in execution speed.  However, the CPU-
GPU code conversion is not straightforward, and in addition, the vast majority of SIM image reconstruction code is not 
written by computer scientists, which implies that there could be performance bottlenecks due to the inefficient code. 
 
To improve code execution speed, we developed a set of simple techniques within the framework of MATLAB using the 
compute-intensive Hessian SIM as the test code and described how to enhance algorithm processing speed [19, 28]. 
MATLAB is a popular programming language and computing environment for many microscopy researchers as it offers 
an easy way to write, test, and run many image processing algorithms without background knowledge in computer 
science. However, the resulting algorithms can suffer from poor performance due to inefficiently written code. When 
code is optimized, significant speed increases are seen. Execution speeds are further enhanced using GPU-enabled 
desktop computers with optimized code for the GPU. These lessons were then used to enhance the execution speed of 
both JSFR- and JSFR-AR-SIM [1, 27].  The results show that the combination of code improvement, conversion to the 
GPU environment, and use of a GPU-enabled computer, results in a 4- to 500-fold improvement in algorithm execution 
speed. Importantly, the resulting image quality is identical to that produced by the original algorithm. 
 

2. RESULTS 
The scheme to improve code execution is straightforward and uses tools already present in MATLAB. These steps 
include first identifying both algorithm and hardware bottlenecks as either one or both can contribute to poor execution 
performance.  Details are provided elsewhere but are summarized in the following paragraphs [28].  To identify 
hardware bottlenecks, the most straightforward approach is to use the Task Manager in Windows and visualize the use of 
different components during algorithm execution.  In the test example shown, that is, using the Hessian SIM algorithm 
and our baseline computer, the CPU is being slightly used while the GPU is not utilized at all (Fig. 1). These results are 
directly attributed to how the algorithm was written and is independent of the type of computer used. That is, the code is 
written inefficiently for the GPU to be idle (less utilized) and designed to be executed on the CPU only, and identical 
results are observed on more powerful GPU-enabled computers (data not shown; see [28]). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Then, using the following functions in MATLAB, one can identify the code bottlenecks - MATLAB Profiler combined 
with the tic and toc functions to determine function execution times. Then the microscopist must determine how 
frequently memory is accessed and reduce this to a minimum. This follows because memory access latency (> 60 ns) is 
much higher than either the CPU or GPU (< 1 ns).  That is, the code requiring frequent memory access is one of the 
major performance bottlenecks. Once these issues have been addressed, the code must be carefully examined to 

 
Figure 1. Hardware utilization monitoring is easily 
performed using Task Manager. A screen capture was 
performed during the execution of the Hessian-SIM 
denoising algorithm. Red boxes highlight the CPU and 
GPU utilization during algorithm execution. 
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determine if it has been inefficiently written. One typical error is conducting redundant operations in a loop that is 
sometimes repeated hundreds of times. Since such redundant operations waste CPU cycles without any progress, they 
must be removed from the loops. 
 
In addition to other issues, most software is written to use only a single core within the CPU.  Modern CPUs have 
multiple CPU cores and each can process different tasks independently, i.e., multitasking. Thus, multiple CPU cores can 
be used for image processing algorithms to improve performance by processing different and independent tasks in 
parallel, i.e., concurrency. To achieve this, MATLAB provides the addon tool called Parallel Computing Toolbox which 
allows researchers to exploit multiple CPU cores. 
 
Once code has been optimized to execute as rapidly and efficiently as possible on the CPU, it can be converted to run in 
the GPU environment. The MATLAB Parallel Computing Toolbox also allows researchers to easily exploit the GPUs. 
As for the CPU code, the GPU code must again be optimized to fully exploit GPU performance via massively 
parallelism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For example, image data need to be stored in CPU memory and GPU memory to be processed and transferred between 
them. However, memory access is slow operation which makes CPU and GPU wait and the transfer between CPU and 
GPU memory is rate-limiting due to the limited bandwidth between these components. Thus, frequent memory access 
and data transfer between the CPU and the GPU during algorithm execution incurs performance overhead and thus must 
be avoided. To avoid unnecessary memory access and data transfer, all data required for image processing algorithms in 
CPU memory can be copied into GPU memory a priori, i.e., pre-allocating. This makes all data processing done in the 
GPU without additional CPU memory access, which improves performance significantly. 
 
The outcome of the improved code on algorithm execution speed is shown in Figure 2. For performance comparison, we 
use a single 128 x 256 x 180 image stack. At the top of panel A, the improved code for the CPU executes 5-fold faster 

330
181

123
313

112
291

162
61

223
161

49
152

4
3.3
2.7
2

0 50 100 150 200 250 300 350

Vanilla (baseline)
Builtin diff()
Inline diff()

Builtin max()
Inline diff() + max()

Non-duplicated code
Single precision

All
Processes

Threads
All (Threads)

gpuArray
All (Script - dup)

All (Script - non-dup)
All (Func - dup)

All

Si
ng

le
-c

or
e

M
ul

ti-
co

re
s

CP
U

GP
U

Execution time (seconds)

Ap
pl

ie
d 

Ap
pr

oa
ch

es

A. Intel Core i7 8750H, 32 GB DDR4

B.

 
Figure 2. Impact of improved code on algorithm execution 
performance. (A), Analysis of individual steps and (B), The Windows 
Task manager shows the impact of improved code on CPU and GPU 
utilization. 
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than the vanilla code (baseline) on a single CPU core.  When multiple CPU cores are used, code executes 7-fold faster 
compared to unmodified code. Finally, when the code is optimized for the GPU environment, the algorithm that took 
330 secs to execute is now accomplished in 2 secs, a 165-fold improvement.  In addition, the CPU is now used at only 
17% of capacity (down almost 2-fold; Fig. 1) and the GPU which was not used at all, is now working at full capacity 
(Fig. 2B), which shows that the GPU has now become a performance bottleneck. 
 
Additional improvements are observed when powerful GPU-enabled computers are used (Table 1) [28]. Here two 
machines were built. The first used Intel I9 technology and had a GPU, while the second used an AMD Ryzen 
Threadripper CPU and had two GPUs. For the Intel-based machine, the algorithm takes 670 msec to execute while the 
AMD- based machine requires 800 msec.  We expect further improvements in execution speed for the AMD machine as 
we did not take full advantage of the two GPUs due to the limited support of MATLAB for multiple GPUs (data not 
shown). Collectively the combination of improved code, conversion to the GPU environment, and use of powerful GPU-
enabled computers results in a 490-fold increase in algorithm execution speed. 
 

Table 1. 
The combination of GPU-optimized code and improved hardware produces maximum performance increases in 

algorithm execution speed. 
 

Algorithm 
executed 

Baseline 
computera 

Intel I-9 
computer 

AMD 
Ryzen 

Computer 

Baseline PC 
CPU      GPU 

(%) 

I-9 PC 
CPU      GPU 

(%) 

Ryzen PC 
CPU      GPU 

(%) 
Initial algorithm 
speed (sec) 

330 133 175    30           0   18            1    9            1 

Improved; CPU 
(sec) 

49 19.5 25 NDb ND ND 

Improved; GPU 
(sec) 

2 0.67 0.8    17         100   7              82 ND 

a. The three computers used for testing are: (1), Baseline - Dell (XPS 15 9570); Intel Core i7-8750H, 32GB of DDR 4 RAM; 1 SSD 
(2TB Samsung SSD 970 EVO Plus one NVIDIA GeForce GTX 1050 Ti with Max-Q Design. The operating system is Windows 
10. (2), Dell (Precision 3660) with an Intel W680 (Alder Lake-S PCH) motherboard; an Intel Core i9-12900K CPU, 64GB of 
DDR5 RAM; 2 SSDs (1TB NVMe SK Hynix and 4TB Seagate ST4000DX005) and one NVIDIA RTX 3090 graphics card with 
24 GB of GPU memory. The operating system is Windows 11. (3), DigitalStorm computer with an ASUS ROG Zenith II Extreme 
Alpha motherboard; an AMD Ryzen Threadripper 3990X CPU, 128GB of DDR4 RAM; 3 SSDs (1TB Samsung 970 EVO Plus; 
2TB Samsung 860 Pro and a 4TB Samsung 860 Pro) and two, NVIDIA RTX A6000 graphics cards with 48GB of GPU memory 
each. The operating system is Windows 11. 

b. ND, not done. 

Due to time constraints, only some of the above-mentioned improvements could be applied to the JSFR- and JSFR-AR-
SIM code (Table 2) [1, 27]. Even with these limited improvements, these data show that each algorithm is executed 20- 
to 60-fold faster in the GPU environment as compared to the CPU.  These speed improvements mean that the 
combination of acquisition and image processing produces a super-resolution image in 67 to 88 msec. Consequently, 
using these two modalities, all microscopy is done in super-resolution imaging mode only. In contrast, previous SIM 
implementations required that an initial field of view be located in widefield mode and then switch to SIM for super-
resolution imaging. This is a laborious and time-consuming process that is now eliminated. 
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Table 2. 

The impact of improved code and implementation of the GPU environment on algorithm execution speed. 

 

Once algorithm execution speed has been improved the resulting image quality must be assessed to determine if 
it is unchanged compared to the original. To do this, images can be compared byte by byte and separately, using 
Image J (Fig. 3) [28].  This analysis shows that the image quality is identical and the only difference is the 
execution speed of the image reconstruction algorithm 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To further demonstrate this, a comparison of images obtained using the GPU-enhanced code is presented 
[1](Fig. 4). These images are within experimental error, identical but are reconstructed at significantly greater 
speeds relative to the unenhanced algorithm. Compare Fig 4B and D to Fig. 4C which were reconstructed using 
GPU-enhanced JSFR- and JSFR-AR-SIM and CPU-executed HiFi-SIM, respectively. 

Input 
image size 

Acquisition 
time 

(ms) 

Reconstruction time of JSFR-SIM 

(ms) 

Reconstruction time of JSFR-AR-SIM 

(ms) 

CPU GPU CPU GPU 

1024×1024 45.0 1401.9±15.0 43.3±0.8   1340.9±70.8 21.5±6.1 

512×512 22.5 293.6±4.7 10.2±0.7 274.9±7.3 5.7±4.5 

256×256 11.3 73.0±0.7 4.5±0.2 68.1±1.7 3.1±0.1 

 
Figure 3. Image analysis reveals that the increase in 
algorithm execution speed does not come at the expense 
of image quality.  A-C, Representative image frames 
produced using the Hessian SIM algorithm. A, Initial 
algorithm. B, GPU-enhanced algorithm executed on the 
Intel-based machine. C, The same algorithm executed on 
the AMD-based computer. D, line profile analysis of the 
yellow lines in A-C. 
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3. CONCLUSIONS 
The primary conclusions of this work are that improved code implemented on GPU-enhanced computers results in 
significantly faster algorithm execution.  For structured illumination microscopy, the reconstruction of super-resolution 
images is sufficiently rapid to enable the microscopist to image in only super-resolution mode, simplifying the workflow 
while simultaneously obtaining images in less than 90 msec. Due to time constraints, only a limited number of 
improvements in algorithms could be implemented and the GPU-enhanced computers could not be used for the super-
resolution imaging. Consequently, we anticipate further speed improvements in algorithm execution speed once all 
changes are implemented and the enhanced computing environment is taken advantage of. 

A.

B.

C. D.

 
Figure 4.  Improved algorithms executed in the GPU environment produce identical images but at 
significantly more rapid rates. A-D, Images of microtubules stained with Cy3B. Algorithm execution speed is 
shown at the bottom left of each image. The scales bars are 5μm [1]. 
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