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Abstract. We investigate the problem of retrieving the optical properties (absorption and scattering) of biological
tissue from a set of optical measurements. A diffuse optical tomography (DOT) algorithm that incorporates con-
strained optimization methods is implemented. To improve image quality, the DOT algorithm exploits full time-
domain data. The time-dependent parabolic simplified spherical harmonics equations (TD-pSPN) are used as the
forward model. Time-dependent adjoint variables are resorted to in the calculation of the gradient of the objective
function. Several numerical experiments for small geometric media with embedded inclusions that mimic small
animal imaging are performed. In the experiments, optical coefficient values are varied in the range of realistic
values for the near-infrared spectrum, including high absorption values. Single and multiparameter reconstructions
are performed with the diffusion equation and higher orders of the TD-pSPN equations. The results suggest the DOT
algorithm based on the TD-pSPN model outperforms the DE, and accurately reconstructs optical parameter dis-
tributions of biological media both spatially and quantitatively. © 2012 Society of Photo-Optical Instrumentation Engineers

(SPIE). [DOI: 10.1117/1.JBO.17.8.086012]
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1 Introduction
Optical radiation in the near-infrared (NIR) spectrum is used to
probe biological tissues with quite significant success in struc-
tural and functional imaging.1–12 Usually, light from a distribu-
tion of sources which has propagated through a tissue is
measured at the tissue’s boundary. These measurements are
then used to reconstruct a map of the internal optical properties.
This medical imaging modality, known as diffuse optical tomo-
graphy (DOT), has undergone fast progress pertaining to models
of light propagation in biological media and algorithms for sol-
ving the inverse problem.1,2 DOT experimental systems have
been simultaneously developed with measurements being
made in either the continuous wave (CW),or the time-resolved
(TR) regimes, with the latter comprising frequency-domain
(FD) or time-domain (TD) measurements as subsets. These dif-
ferent measurement schemes have collected numerous data
types.13–15 FD and TD data are frequently used when both scat-
tering and absorption properties of tissues are needed. On the
other hand, the uniqueness of CW-based solutions to the
DOT and fluorescence DOT (FDOT) inverse problems is a
topic of current discussion.16–18 It is generally believed that
TD measurements can provide the richest information content
about the local distribution of optical properties in tissue.19,20

Image reconstructions based on the distinct features of TD
data are able to separate absorption from scatter maps, while
reducing the crosstalk effect.21–24 Moreover, DOT and FDOT
reconstruction algorithms that use full TD data show promising
results in terms of improving spatial resolution and their ability
to quantitatively determine optical coefficients maps.25–27

Despite the former results, DOT reconstruction algorithms are
limited by the accuracy of the forward model. In the presence
of small geometries and high absorption values, the diffusion
equation (DE) is no longer valid as a forward model.28 To over-
come limitations of the DE, and computational expenses of
other approaches resorting to the radiative transfer equation
(RTE), or the PN approximation thereof, low-order transport
models incorporating the simplified spherical harmonics
approximation (SPN) were derived for biomedical optics appli-
cations.29–32 Analytical solutions to SPN-based models have
appeared in the literature for simple geometries with homoge-
neous optical properties.33,34 Numerical solutions for complex
media were also found for simulating light propagation from
external sources and fluorescent probes.29–32,35–37 These results
led to the development of SPN model-based image reconstruc-
tion algorithms for solving inverse problems in intrinsic, biolu-
minescence, and fluorescence DOT imaging.38–41 However, as
far as we know, no image reconstruction method or algorithms
based on a time-dependent SPN model was ever attempted. Such
an approach could benefit from both the accuracy of the SPN
models and the richness of TD data. The subject of this
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paper is to provide such an approach, and assess the accuracy of
the TD SPN equations as a forward model (see below) for reco-
vering the internal optical properties of biological media.

With that goal, an image reconstruction algorithm for solving
the inverse DOT imaging problem is implemented. As the for-
ward model, which is reviewed in Sec. 2, a discretized formula-
tion of the time-dependent parabolic SPN equations (the TD-
pSPN model) is used, which was derived and studied in
depth in a previous work.32. The spatial discretization of the
model is performed through the finite element method (FEM),
and the temporal discretization is carried out with an implicit
finite difference scheme. In this way, it is possible to deal
with complex geometries and heterogeneous distributions of the
optical coefficients. Following the latest trends in model-based
image reconstruction algorithms, which resort to iterative opti-
mization techniques,42–46 the inverse problem is cast here as a
partial differential equation (PDE)-constrained optimization
scheme. This will be described in Sec. 3. To aid in reducing
the ill-posedness and improve the stability of the algorithm,
the inverse problem solution is further constrained by imposing
bounds on the optical coefficient values. The resulting optimi-
zation problem possesses a high number of unknown variables,
and has to deal with a large amount of data owing to the use of
TD data. To reduce complexity, a nested analysis and design
(NAND) method is employed.47 Further, the problem is framed
in a sequential quadratic programming (SQP) algorithm.48 By
the introduction of adjoint variables, an iterative numerical
scheme for calculating the gradient values of the objective func-
tion (OF) at each time step is provided, with the OF measuring
the discrepancy between the predicted and actual measurements.
The former steps (i.e., the use of NAND, SQP, and adjoint vari-
ables) taken in solving the inverse problem reduce the computa-
tion time considerably.

To examine the DOTalgorithm’s performances and the accu-
racy of the TD-pSPN model in the reconstructions, a series of
numerical experiments resembling small animal intrinsic ima-
ging are carried out, as described in Sec. 4. Single parameter
reconstructions are performed for the case of a homogeneous
medium with an embedded absorptive inclusion, for which
increasing values of the absorption coefficient are employed.
High absorption values which simulate practical situations
encountered in DOT and FDOT are considered. The image
reconstructions for SPN orders N > 1 yield better quantitative
results than the DE-based reconstructions. Particularly, the
reconstructed images using the TD-pSP3 approximation provide
the best results. Next, a scattering inclusion is added in the pre-
vious situations, and the simultaneous reconstruction of the
absorption and the diffusion coefficient maps is performed.
As before, image reconstructions for N > 1 better estimate
the optical properties of the inclusions than the DE (TD-pSP1).

As will be seen, the results obtained support the TD-pSPN-
based DOT algorithm presented herein as an accurate approach
for obtaining spatial distributions of internal optical properties
of biological media.

2 Forward Problem
In Ref. 32, a new time-dependent model based on the SPN
approximation for describing light propagation in scattering
and absorbing media was described and validated. The model
is represented by a set of ðN þ 1Þ∕2-coupled parabolic partial
differential equations (PDEs) referred to as the time-domain
parabolic SPNðTD−pSPNÞ equations. The TD-pSPN equations

can be written in matrix notation in terms of the vector of com-
posite moment functions Φ as32

�
Cþ η

c
∂
∂t
T
�
Φðr; tÞ þDrΦðr; tÞ ¼ Qðr; tÞ; (1)

where η is the refractive index of the medium, and c is the speed
of light in a vacuum. The explicit expression for the matrices C,
T, the matrix operator Dr, and the source vector Q are repro-
duced in Appendix A. FEM spatial discretization and an implicit
finite differencing method (FDM) for the time variable lead
to the following FEM-FDM numerical representation of the
TD-pSPN equations32

W̃Φ̃ðmÞ ¼
�
η

c

�
T̃Φ̃ðm−1Þ þ ϒ̃ðmÞ; (2)

where

W̃ ¼ ΔtðK̃þ M̃þ Π̃Þ þ
�
η

c

�
T̃; (3)

and

ϒ̃ðmÞ ¼ Δt½F̃ðmÞ þ Γ̃ðmÞ�: (4)

In Eqs. (2)–(4), Φ̃ðmÞ represents the vector of composite
moments of the radiance at time tm ¼ mΔt, where Δt is the
time-step employed in the finite difference scheme. The remain-
ing terms appearing in Eqs. (3) and (4) are also described in
Appendix A, along with their dependencies on the absorption
μa, scattering μs, and anisotropy g coefficients. As the terms
given in Eqs. (3) and (4) are critical in describing the solution
to the inverse problem, Appendix A and Ref. 32 should be con-
sulted as necessary. Next, the notation associated with Eq. (2) is
discussed.

2.1 Notation

The SPN equations come naturally with odd orders N.29,32

To simplify the notation in the sequel, the constant K ¼
ðN þ 1Þ∕2 is defined. The following notation will also be used.
First, the quantity Φðr; tÞ considered in the TD-pSPN model is
given by a vector of space- and time-dependent functions as
follows

Φðr; tÞ ¼ ½φ1ðr; tÞ φ2ðr; tÞ · · · φKðr; tÞ �T; (5)

where ½ �T means the transpose; the functions φkðr; tÞ
k ¼ 1; : : : ; K are called the composite moments, and they con-
stitute what are referred to as the state variables when image
reconstruction is considered later. When the time variable is dis-
cretized at timesteps tm ¼ mΔt, m ¼ 1; : : : ;M − 1, the follow-
ing quantities are defined

ΦðmÞðrÞ ≡Φðr; tmÞ: (6)

Using the FEM, the solutions Φðr; tÞ to the TD-pSPN equations
are approximated over a mesh of elements (e.g., triangles) by a
piecewise polynomial and continuous function Φhðr; tÞ. Let L
be the number of nodes in the mesh (e.g., the different vertices of
the mesh triangles). Then, the solution may be written as
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Φhðr; tÞ ¼
XL
i¼1

ΦiðtÞuiðrÞ; uiðrÞ ∈ Ωh; (7)

where Ωh is a finite-dimensional subspace spanned by the poly-
nomial basis functions uiðrÞ, i ¼ 1; : : : ; L, and where h denotes
the characteristic size of the elements. Hence, the problem is
reduced to finding the nodal values Φ̃ðtÞ ¼ fΦiðtÞgi¼1; : : : ;L
from which the solution can be obtained everywhere through
the interpolation rule given in Eq. (7). The simplest choice,
and the one made here, is a piecewise linear basis over a
mesh of triangles in which the nodal values of the basis func-
tions are defined by uiðrjÞ ¼ δi;j, i; j ¼ 1; : : : ; L. Let
i ¼ 1; : : : ; L be an index over the set of all nodes in the
FEM mesh of triangles that will be denoted byD ¼ frigi¼1; : : : L,
with r denoting the position of a point in space. The subset of
interior nodes inDwill be denoted byDI, and LI will denote the
number of interior nodes. The remaining nodes form the set of
boundary nodes denoted by DB containing a total of LB nodes,
with, of course, LI þ LB ¼ L.

The discretized version of Φðr; tÞ is

Φ̃ðmÞ ¼ ½φ̃1ðr1; tmÞφ̃1ðr2; tmÞ · · · φ̃1ðrL; tmÞφ̃2ðr1; tmÞ · · ·

φ̃2ðrL; tmÞ · · · φ̃Kðr1; tmÞ · · · φ̃KðrL; tmÞ�T;

or in more abbreviated form

Φ̃ðmÞ ¼ ½ φ̃ðmÞ
1 φ̃ðmÞ

2 · · · φ̃ðmÞ
K

�T: (8)

Light source configurations are indexed with the subscript s.
A source configuration is used for illuminating the medium
and making a set of measurements. Such a set of measurements
for a given source configuration is what will be called a “tomo-
graphic projection”. A source configuration may, for instance,
consist of a set of different sources simultaneously illuminating
the object. For a given source configuration s, the associated
solution of the discretized TD-pSPN equations at a given
time m will be written as Φ̃ðmÞ

s . Hereon, fΦ̃ðmÞ
s g will denote

the set containing the solution at all time steps for all source
configurations.

Note that the discretized TD-pSPN equations are solved for
each s ¼ 1; : : : ; S (i.e., for each source configuration illumi-
nating the object) in order to predict the measurements
made for that configuration. This means that the forward pro-
blem needs to be solved as many times as there are source
configurations.

In the following, μ will denote the vector containing the set
of optical coefficients evaluated at the nodes of the FEM mesh
and to be retrieved through the solution of the inverse problem.
Each optical coefficient is expanded along the same type of basis
functions of the FEM expansion, see Eq. (7). In accordance with
the previous notation, if for example the optical coefficients μa
andD are considered, as will be done later, whereD is the diffu-
sion coefficient given by D ¼ 1∕½3ðμa þ ð1 − gÞμsÞ�, then

μ ¼ ½μaðr1Þμaðr2Þ · · · μaðrLÞDðr1ÞDðr2Þ · · · DðrLÞ�T ð9Þ

represents the nodal values of the optical coefficients.

2.2 Measurements Modeling

The type of measurements depends on the experimental condi-
tions, and can take diverse forms.22 Here, measurements are

taken as the full time-dependence of the outgoing normal com-
ponent of the radiant current density vector JðmÞ

n;s;d (or excitance)
at a finite collection of detector positions rd, d ¼ 1; : : : ; D for
each source configuration s at m different times. The values of
JðmÞ
n;s;d can be calculated using Φ̃ðmÞ

s and the optical coefficients
evaluated at the detector positions via

JðmÞ
n;s;d ¼ ½j1 − j2ðBÞ−1A�Φ̃ðmÞ

s ðrd; tÞ ¼ VdΦ̃
ðmÞ
s ðrd; tÞ;

s ¼ 1; : : : ; S; d ¼ 1; : : : ; D; m ¼ 1; : : : ;M;
(10)

where the expressions for vectors j1 and j2 are given in Appen-
dix B, and A and B are matrices appearing in the boundary con-
ditions,29,32 see Appendix A. The elements of both matrices
depend on the values of the optical coefficients of the medium
at the boundary nodes. The vector Vd is a compact representa-
tion of the “measurement operator” j1 − j2ðBÞ−1A. Note that if
the outward flux is collected in a detection area, and that if geo-
metrical factors and the numerical aperture of a real detector are
taken into account (see Sec. 7-6 in Ref. 49), then other types of
measurements can be expressed as a weighted sum of the values
of JðmÞ

n;s;d.

3 Inverse Problem
DOT imaging is an inverse problem that can be considered as a
parameter-estimation task. It involves finding parameter values,
which are optimal in that they minimize an objective—or
functional—that measures the misfit between a given set of
measurements and predictions thereof. A judicious choice of
functional improves the quality of the final image and acceler-
ates the convergence of the reconstruction algorithm, even in the
presence of measurement noise. In addition, a suitable func-
tional reduces the effect of cross variations on the optical para-
meter subsets, an effect known as crosstalk.22 Several
functionals and selection of measurement types are proposed
in the literature to eliminate functional valley structure, and
achieve less eccentricity in the functional characteristic sur-
face.22,50 Even so, simulated and experimental reconstructions
still exhibit poor spatial resolution and quantitativeness.19,21,22

Some authors recommend exploiting the full profiles of TD
measurements in nonlinear reconstruction schemes.25,26 The
main idea behind the mentioned approaches is that the ampli-
tude of the TD profile is influenced by both absorption and scat-
tering coefficients (the influence of the absorption coefficient is
stronger in these respects), while the shape of the TD profileis
more dependent on the scattering coefficient values.19 Still,
exploiting TDdata in image reconstruction algorithms and opti-
mal functional selection is a subject of active research.50–52

3.1 Optimization Problem

Following the previous discussion, a least-squares estimation is
cast to the inverse problem using an objective function resem-
bling that proposed in Ref. 25. Then, the minimum of the dif-
ference between the TD measurement data MðmÞ

s;d , s ¼ 1; : : : ; S,
d ¼ 1; : : : ; D, m ¼ 1; : : : ;M and the predictions JðmÞ

n;s;d
obtained from the TD-pSPN forward model is sought. Thus,
the following objective function (OF) is considered

f ¼ 1

2

XS
s¼1

XD
d¼1

XM
m¼1

�
MðmÞ

s;d − JðmÞ
n;s;d

σðmÞ
s;d

�2
; (11)
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where the magnitudes σðmÞ
s;d quantify the uncertainty in measure-

ments, which are mainly influenced by photon noise. Because of
the Poisson distribution nature of the photon noise present in TD
data (shot noise is considered as the main contribution here); the
uncertainty is assumed to be proportional to the square root of

the measured signal,51 i.e., σðmÞ
s;d ∼

ffiffiffiffiffiffiffiffiffiffi
MðmÞ

s;d

q
. To gain clarity for the

sequel, the OF is re-written directly in terms of Φ̄ðmÞ
s

f ¼ 1

2

XS
s¼1

XD
d¼1

XM
m¼1

h
MðmÞ

s;d −
P

K
k¼1 Vk;dPk;dΦ̄

ðmÞ
s

i
2

MðmÞ
s;d

; (12)

where the measurement operator Vd appearing in Eq. (10) was
decomposed into K components (k ¼ 1; : : : K). The projection
operator (or vector) Pk;i is represented by a row vector of length
K times L which has zero components except for a value equal
to 1 at position ðk − 1ÞLþ i. Thus, for any m, [refer back to
Eq. (8)]

Pk;dΦ̃
ðmÞ
s ¼ φ̃ðmÞ

k;s;d: (13)

Now, the inverse problem can be posed as finding

μ ¼ arg min
fμhg

1

2

XS
s¼1

XD
d¼1

XM
m¼1

�
MðmÞ

s;d −
P

K
k¼1 Vk;dPk;dΦ̃

ðmÞ
s

�
2

MðmÞ
s;d

;

subject to

8<
:

W̃Φ̃ðmÞ
s ¼

�
η
c

�
T̃Φ̃ðm−1Þ

s þ ϒ̃ðmÞ
s ;

μlow ≤ μ ≤ μup;

m ¼ 1; : : : ;M; s ¼ 1; : : : ; S;
(14)

where arg min stands for argument of the minimum. The vec-
tors μlow and μup are lower and upper bounds over the set of
optical coefficients μ.

The inverse problem posed in Eq. (14) is a constrained opti-
mization problem, specifically a PDE-constrained optimization
problem. In general, PDE-constrained optimization refers to the
optimization of systems whose states are governed by PDEs.
The forward problem consists insolvingthe PDEs for the state
variables (e.g., temperature, electric field, or in the present
case, the optical field fΦ̃ðmÞ

s g), given appropriate data (e.g., geo-
metry, boundary conditions, initial conditions, source functions,
and in DOT, the set of optical coefficients μ). The optimization
problem seeks to determine some of these data, called the deci-
sion or design variables, given performance goals in the form of
an OF [first line of Eq. (14)], and possibly inequality or equality
constraints on the behaviour and parameters of the system. Since
the system’s behavior is modeled by PDEs, the latter appear as
equality constraints in the optimization problem. The PDE con-
straints are usually referred as the state equations. There is an
extra feature in the present problem that increases its complex-
ity. If the state equations are evolutionary in nature (that is,
dependent on time), the optimality conditions (necessary condi-
tions for the existence of a minimum) for Eq. (14) constitutes a
boundary-value problem in the space–time domain. For this rea-
son, the optimization problem considered here is significantly
more difficult to solve than steady-state problems. Posing the
inverse problem as a PDE-constrained optimization problem

is a relatively new approach in biomedical optics42–46 that ben-
efits from considerable experience gained in the area of large-
scale optimization.47,48,53,54

3.2 Nested Analysis and Design

The total number of variables (state and design variables) in the
present case dealing with TD data considerably surpasses those
in CW and FD inverse problems. The optimization problem
becomes more complex because of the time-dependence of
the forward model. The reconstruction algorithm has to deal
with a large amount of variables and involves sparse matrices
whose size and manipulation are memory demanding, especially
for a fine mesh and small time-steps. Typically, a TD measure-
ment can contain up to a few thousands of points. For the present
purposes, on the order of a hundred points on each TD curve are
used, which makes the number of state variables around 100 ×
K times that of design variables. Motivated by these considera-
tions, it was decided to employ a “nested analysis and design”
(NAND) method to solve the inverse problem. The NAND
method, also called the “black-box” approach, reduces the num-
ber of unknown parameters in a constrained optimization
problem47 by considering the state variables (in the present case,
fΦ̃ðmÞ

s g) as implicit functions of the design variables μ. Thus, the
states fΦ̃ðmÞ

s g are obtained by explicitly solvingthe PDE [given
by Eq. (2)], and substituted in the OF, leading to a reduction of
the dimensionality of the problem. In mathematical terms

Φ̃ðmÞ
s ¼ Φ̃ðmÞ

s ðμÞ ⇒ fðΦ̃ðmÞ
s ;μÞ ¼ fðΦ̃ðmÞ

s ðμÞ;μÞ ¼ fðμÞ:
(15)

Consequently, the problem is reduced to an optimization pro-
blem which is unconstrained with respect to the PDE, but con-
strained with respect to the optical properties to be recovered
because of the lower and upper bounds imposed thereon.
These upper and lower bound constraints are treated in the algo-
rithm as linear constraints with an associated lI merit function;
see below. Descriptions of the algorithm and implementation
details are provided next.

3.3 Sequential Quadratic Programming

To find the solution, the optimization problem posed in Eq. (14)
is cast into a sequential quadratic programming (SQP) algo-
rithm. SQP basically consists in locally approximating the
objective function at each iteration step by a quadratic function.
This significantly simplifies the optimization problem, because
a simpler quadratic function needs to be considered, rather than
a nonlinear one.48 SQP is widely used in large-scale optimiza-
tion for solving nonlinear constrained optimization problems
because of the reduction in the computational cost and its
fast convergence. Details about the implementation of this
kind of schemes can be found elsewhere. For example, see
Refs. 48, 53, and 54 for extensive documentation about the
topic, and Refs. 44–46 and 54 for applications of inverse pro-
blems in electromagnetism, DOT, and fluorescence DOT. A
description of the SQP method used in the context of the present
DOT algorithm will now be made.

For the line-search at every iterate μk of the optical properties
at step k during the optimization process, the search direction
dk in the SQP scheme is obtained by solving the quadratic
subproblem48
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min
d∈Rn

1

2
dTkHkdk þ gkdk; subject toμlow ≤ μ ≤ μup; (16)

where gk denotes the gradient of the OF at step k, which is
obtained through the forward model (see next subsection),
and Hk denotes the Hessian (with respect to μk) of the
Lagrangian function Lðμ; λÞ ¼ fðμÞ − βTcðμÞ [β is the vector
of Lagrange multipliers determined by the Karush-Khun-Tucker
(KKT) conditions]. Here, the bound constraints μlow ≤
μ ≤ μup are rewritten as linear constraints represented by
cðμÞ ≥ 0. The updated vector is given by

μkþ1 ¼ μk þ αkdk; (17)

where αk is a step-length parameter that provides sufficient
reduction in the l1 merit function

ϕρ ¼ fðμÞ þ ρkvðμÞk1: (18)

Here, ρ is the penalty parameter defined to enforce a descent of
φρ, and vðμÞ measures the violation of the constraints; the func-
tion v is defined as

kνðμÞk1 ¼
XNv

n¼1

fjmaxð0; μn − μn; upÞj

þ jmaxð0; μn; low − μnÞjg; (19)

where Nv is the number of elements in the vector μ. Usually in
such SQP schemes, the Hessian is updated by the damped Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) method to avoid com-
puting second derivatives,48 and this method was used here. For
a representation of the general algorithm and the SQP scheme,
see the flowchart appearing in Fig. 1.

In the following, some focus is put on the necessary calcula-
tion of the gradient of the OF. The technique based on adjoint
variables avoids using finite difference schemes of the OF
and associated inherent errors and extremely high computa-
tional cost.

3.4 Gradient of the Objective Function

Calculating the gradient of the OF is undoubtedly the most dif-
ficult part of an inverse problem. This will now be tackled for the
specific problem considered herein. Here, the gradient of the OF
g can be expanded as a sum of independent terms for each
source configuration: g ¼ P

S
s¼1 gs. Considering the implicit

dependence of Φ̃ðmÞ
s on μ, the j’th component of the gradient

gs;j can be written as

gs;j ¼
XM
m¼1

df

dΦ̃ðmÞ
s

∂Φ̃ðmÞ
s

∂μj
; (20)

where df∕dΦ̃ðmÞ
s denotes the derivative of the OF with respect to

Φ̃ðmÞ
s . The explicit variation of Φ̃ðmÞ

s with μ can be obtained from
Eq. (2) as

∂Φ̃ðmÞ
s

∂μj
¼ −W̃−1

�
∂W̃
∂μj

�
Φ̃ðmÞ

s : (21)

Note that in obtaining Eq. (21),Φ̃ðm−1Þ
s , which appears in Eq. (2),

was not differentiated with respect to μj, because, as shown
below, backwards differentiation will be resorted to, and in
this framework, Φ̃ðm−1Þ

s is considered dependent on Φ̃ðmÞ
s .

Next, an expression for df∕dΦ̃ðmÞ
s is derived. Note that because

of Eq. (2), a simple explicit derivative of the OF with respect to
Φ̃ðmÞ

s does not consider the dependence of Φ̃ðmÞ
s on previous time

values of the field which comes from the FDM scheme.
To resolve that issue, the core idea of adjoint differentiation
(or reverse differentiation) expounded in Ref. 55 for a time-
dependent DE-based inverse problem is followed. The idea is
toapply the chain rule of differentiation backwards from time
mþ 1 to m to the OF to yield

df

dΦ̃ðmÞ
s

¼ df

dΦ̃ðmþ1Þ
s

dΦ̃ðmþ1Þ
s

dΦ̃ðmÞ
s

þ ∂f

∂Φ̃ðmÞ
s

; (22)

with

df

dΦ̃ðMÞ
s

¼ ∂f

∂Φ̃ðMÞ
s

: (23)

Equations (22) and (23) now take into account the time-
dependence of Φ̃ðmÞ

s . From Eqs. (2) and, the following terms
can be calculated

dΦ̃ðmþ1Þ
s

dΦ̃ðmÞ
s

¼ W̃−1
�
η

c

�
T̃; (24)

∂f
∂Φ̃ðmÞ

s

¼
XD
d¼1

�P
K
k¼1 Vk;dPk;dΦ̃

ðmÞ
s −MðmÞ

s;d

�

MðmÞ
s;d

XK
k¼1

Vk;dPk;d:

(25)

Substituting Eq. (21) into Eq. (20), and Eq. (24) into Eq. (22),
leads to

Fig. 1 Flowchart of the general algorithm and sequential quadratic pro-
gramming (SQP) scheme.
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gs;j ¼ −
XM
m¼1

df

dΦ̃ðmÞ
s

W̃−1
�
∂W̃
∂μj

�
Φ̃ðmÞ

s ;

df

dΦ̃ðmÞ
s

¼ df

dΦ̃ðmþ1Þ
s

W̃−1
�
η

c

�
T̃þ ∂f

∂Φ̃ðmÞ
s

: (26)

Equation (26) suggests the introduction of the adjoint variables

λðmÞ
s as auxiliary variables

W̃TλðmÞ
s ¼ −

�
df

dΦ̃ðmÞ
s

�
T
; (27)

which allows rewriting Eq. (26) as

gs;j ¼
XM
m¼1

ðλðmÞ
s ÞT

�
∂W̃
∂μj

�
Φ̃ðmÞ

s ; (28)

df

dΦ̃ðmÞ
s

¼ −ðλðmþ1Þ
s ÞT

�
η

c

�
T̃þ ∂f

∂Φ̃ðmÞ
s

: (29)

Introducing the adjoint variables λðmÞ
s reduces the number of

computations to be carried out because it avoids the need to

compute the partial derivatives of the field Φ̃ðmÞ
s with respect

to μ. As seen from Eq. (28), the adjoint variables λðmÞ
s need

to be computed in order to obtain the gradient. The adjoint vari-
ables are obtained from Eqs. (27) and (29) by starting with
m ¼ M. In this case,

W̃TλðMÞ
s ¼ −

�
∂f

∂Φ̃ðMÞ
s

�
T
: (30)

Then, for m < M the derivative df∕dΦ̃ðmÞ
s is obtained from

Eq. (29) and used in Eq. (27) to get λðmÞ
s . From Eq. (27) it is

seen that the matrix W̃T needs to be repeatedly inverted in
this process. The computation load of these inversions, which
are always the same for a given algorithm iteration, can be
reduced by first storing information on the matrix (e.g., some
form of factorization). It should be pointed out that in solving
the forward model, the inversion of W̃ is needed as well. At that
point, the information alluded to above regarding W̃ can be
stored.

As a final note, further applications of Eq. (29) are: 1. the
construction of sensitivity maps (for each order N) to changes
in the medium optical properties, and 2. the generation of single-
perturbation error maps for custom data types and functional
optimal selection.22

4 Results of Numerical Experiments

4.1 Reconstruction of Absorption Coefficient Maps

The numerical experiments in this subsection were performed
for a circular geometry with a radius of 1.5 cm with homoge-
neous optical properties. This medium mimics a two dimen-
sional (2D) slice of a small volume of biological tissue,
see Fig. 2.

The values of the optical coefficients of the homogeneous
medium are μa ¼ 0.01 cm−1, μs ¼ 100 cm−1, and g ¼ 0.9.

The refractive index of the medium is 1.4, resembling fat tissue,
and the medium is considered as surrounded by air. These values
are representative of small animal tissue samples in the NIR
spectrum, e.g., abdomen, brain, and blood vessels in rats.29,56

Next, Dirac delta functions in time collimated laser sources
are placed at eight positions located at the boundary of the cir-
cular geometry, see Fig. 2. The sources are modeled as exponen-
tially damped line sources distributed inside the medium and are
fired sequentially. To use the FEM, the medium was divided into
triangular elements (816 nodes and 1534 elements) using a
coarse regular Delaunay triangulation as shown in Fig. 2. As
a second step, an irregular-shaped inclusion is positioned inside
the medium. It has the same properties as the background med-
ium, except for the absorption coefficient μa, for which the fol-
lowing increasing values were examined: 0.05, 0.1, and 1 cm−1

(Fig. 3). These μa values cover possible situations appearing in
DOTand FDOT, including regions with high absorption, such as
vascularized tissues and/or fluorescent inclusions.56,57

Using the FEM-FDM representation of the TD-pSPN equa-
tions, the time-dependent distribution of fluence in the circular
geometry is calculated for the three aforementioned μa values
and for the orders N ¼ 1; 3; 5, and 7 of the SPN . A partially
delimited darker region with depressed values of the fluence
was noted at the location of the inclusion in all the cases.
The darkening increased with the increase of the inclusion’s
μa. In addition, synthetic boundary data was generated by col-
lecting the time-dependent values of the excitance. Measure-
ments are gathered at eight different detector positions
located at the boundary of the circular geometry (Fig. 2).
Image reconstruction is then carried out with the DOTalgorithm
using the generated TD data and the same mesh used for the
forward problem. At this point, it should be stressed that the
inverse crime is strictly committed in the calculations (forward
and inverse calculations employed the same mesh). This is done
because the aimis to study the accuracy of the model (at each
order N) in determining the corresponding set of optical para-
meters, without considering other sources of error, such as those

Fig. 2 Mesh of the circular geometry. Sources and detector (optodes)
positions are represented by white spots (S) and dark squares (D),
respectively.
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introduced by using different mesh resolutions and/or noise in
the measurements.To evaluate the image reconstructions, we
introduce the relative error εr (in percent) in the maximum of
the reconstructed values at the region of interest (inclusion or
background medium) μremax, with respect to the original value

μomax as εr ¼ 100 · jμremax − μomaxj∕μomax. The relative error εr is
also used in the multi-parameter reconstructions (next section)
with the same purpose.

Figure 4 consecutively displays the solution to the inverse
problem posed in Eq. (14) for the medium shown in Fig. 3.
In all calculations, the absorption coefficient lower and upper
bounds [see Eq. (14)] are taken to be 0.01 and 5 cm−1, respec-
tively. For the three values of the inclusion’s μa, 0.05, 0.1, and
1 cm−1 (left to right), the inverse problem solution is plotted for
the orders N ¼ 1, 3, and 5 (upper, middle, and lower rows,
respectively). Order N ¼ 7 was omitted from the exposed
results because it did not introduce significant changes com-
pared to order N ¼ 5. In all cases, the algorithm used the optical
properties of the homogeneous medium as the initial guess; no a
priori information was employed.

Figure 4(a)–4(c) shows the reconstructed images using the
SP1 approximation can provide an accurate localization of the
inclusion for the whole range of absorption coefficient values,
and the background optical properties are accurately recon-
structed; however, the absorption coefficient values of the het-
erogeneity are overestimated in all cases. The relative error εr
values range from 10% to 27% (left to right cases). This result is
in accordance with the known fact that DE-based algorithms
start failing in regions with high absorption values because
the diffusion approximation on which the DE is based does
not hold in such regions.32

Figure 4(d)–4(f) shows the reconstructed images using the
SP3 approximation also accurately locate the position of the
inclusion. The background optical properties are accurately
recovered as well. The absorption coefficient values of the het-
erogeneity are underestimated in cases (d) and (f) and overes-
timated in case (e). The relative error εr values vary from 5%
(middle figure) to 9%, and13% (left and right figures).

Fig. 4 Solution of the inverse problem for a homogeneous medium with an absorptive inclusion. The true values of the absorption coefficient for the
inclusion are: 0.05 (1st column), 0.1 (2nd column), and 1 cm−1 (3rd column). Absorption of the background is 0.01 cm−1. Solutions are plotted for the
orders N ¼ 1, 3, and 5 (upper, middle, and lower rows, respectively). For comparison, the black ring located at the top of the figures represents
the inclusion’s shape at a height corresponding to its absorption coefficient value. See text for precise numbers on the differences between recon-
structed and true values.

Fig. 3 Circular geometry with an embedded absorptive inclusion
(in white).
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Finally, Fig. 4(g)–4(i) shows the reconstructed images using
the SP5 approximation accurately locate the position of the
inclusion and reconstruct the background optical properties.
The reconstructed values of the inclusion’s absorption coeffi-
cient are overestimated in cases (h) and (i) and underestimated
in case (g). The relative errors are 10%, 5%, and 19% (from left
to right).

From the numerical experiments, it can be deduced that SPN
orders higher than N ¼ 1 (which corresponds to the DE) pro-
vide accurate localization of the absorptive heterogeneity and
retrieval of the background optical properties. Moreover, they
are able to better estimate high values of the absorption coeffi-
cient of the heterogeneity than the DE. Particularly, the recon-
structed images using the SP3 approximation provide the best
estimates, with a reduction in the relative errors compared to
the DE.

4.2 Simultaneous Reconstruction of Absorption and
Diffusion Maps

The simultaneous reconstruction of absorption and diffusion
coefficient maps will now be discussed. The numerical experi-
ments are performed with the same homogeneous circular geo-
metry as previously (Fig. 2), and the optodes (sources and
detectors) are in the same configuration as before. The optical
coefficient values of the homogeneous medium are μa ¼
0.01 cm−1, μs ¼ 80 cm−1, and g ¼ 0.9. These values corre-
spond to a diffusion coefficient D of 0.0416 cm. As before,
the refractive index of the medium is taken as 1.4, and the med-
ium is considered as surrounded by air. Besides pursuing the
same goal as before, the inverse crime is again committed.

Next, two irregular inhomogeneities are embedded in the
medium, see Fig. 5(a) and 5(c) (the inhomogeneities are
shown in two different maps but they are really in the same med-
ium; this is because the scales of absorption and scattering

coefficients widely differ). The absorption coefficient of the
first inclusion takes the increasing values of 0.05, 0.1, and
1 cm−1 [Fig. 5(a) shows the case for μa ¼ 0.05 cm−1] with
remaining optical properties identical to those of the homoge-
neous background medium. These values correspond to diffu-
sion coefficient values of 0.0414, 0.0412, and 0.037 cm,
respectively.

The second inclusion [Fig. 5(c)] has the same properties as
the background medium, except for the scattering coefficient μs,
which is assigned a value of 120 cm−1. This value corresponds
to D ¼ 0.0277 cm. Note that the differences in the diffusion
coefficient maps between the background and values at the
inclusions are much higher for the scattering inclusion than
the absorptive inclusion. As a consequence, for small absorption
coefficient values, diffusion coefficient maps (D-maps) have to
be carefully analyzed to appreciate the effect of absorptive inclu-
sions. All optical coefficient values reported in this subsection
are typical in small animal imaging (e.g., of commonly used in
experimental sets).58

As in the previous subsection, the time-dependent fluence
distribution is calculated for all the physical situations and
the orders N ¼ 1; 3; 5, and 7. Sources are modelled as pre-
viously. Differences in the fluence profiles partially delineate
the zones where the inclusions are located. Excitance values are
collected at eight detector positions located at the boundary of
the circular geometry (Fig. 2). At this point, the absorption and
the diffusion coefficient distributions are simultaneously recon-
structed with the generated TD data.In the calculations, the
absorption coefficient values [see Eq. (14)] are bound between
0.01 and 5 cm−1, which is the range of typical values encoun-
tered in practice. In a similar way, the diffusion coefficient is
bound to lie between 0.0001 and 0.0416 cm (same value as
the background medium), respectively. Reported error values
for the optical parameters in this section are calculated as in the
absorption-only reconstructions.

Figure 6 shows the reconstructed absorption coefficient maps
(μa-maps). For the three values of μa, 0.05, 0.1, and 1 cm−1 (left
to right columns of images), the inverse problem solution is
plotted for the orders N ¼ 1; 3; 5, and 7 (first, second, third
and fourth rows, respectively). In all cases, the algorithm uses
the optical properties of the homogeneous medium as the initial
guess; no a priori information is employed. In general, it can be
seen that all orders (N ¼ 1; 3; 5, and 7) provide an accurate loca-
lization of the inclusion for the whole range of μa values pre-
sented. In addition, background optical properties are acceptably
recovered, with an almost indistinguishable (less than 1%) rela-
tive error at few nodes (the reference used to calculate this error
is the background absorption coefficient value).

For the absorptive inclusion with μa ¼ 0.05 cm−1(Fig. 6,
first column of images), it is observed that the SP1 and SP7
approximations underestimate the value of μa at the inclusion
with errors of 19% and 12%, respectively. On the other hand,
the SP3 and SP5 approximations overestimate the value of μa at
the inclusion with errors of 0.1% and 1%, respectively.

For μa ¼ 0.1 cm−1 (Fig. 6, second column of images), the
SP1 approximation underestimates the value of μa at the inclu-
sion with a 16% error. In this physical situation, the orders
N ¼ 3; 5, and 7 overestimate the value of μa at the inclusion
with errors of 8%, 12%, and 13%, respectively.

For μa ¼ 1 cm−1 (Fig. 6, last column of images), only the
SP1 approximation overestimates the absorption coefficient
value at the inclusion with an error of 8%. The SP3, SP5,

Fig. 5 (a) Absorption map depicting the absorptive inclusion
(μa ¼ 0.05 cm−1). (b) Diffusion map (D-map) for the absorptive inclu-
sion displayed in (a). (c) Scattering coefficient distribution maps for the
scattering inclusion (μs ¼ 120 cm−1). (d) D-map for the scattering inclu-
sion displayed in (c).
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and SP7 approximations underestimate the absorption coeffi-
cient value at the inclusion, but with errors below 1%.

From the results, it may be inferred that in the case of multi-
parameter image reconstructions, orders higher than N ¼ 1 pro-
vide an accurate localization of the absorptive heterogeneity and
an acceptable quantitative retrieval of the background optical
properties. In addition, they better quantify the inclusion’s μa
values than the DE. Reconstructed images using the SP3 approx-
imation give the best estimates, closely followed by the higher
orders.

Figure 7 shows the reconstructed D-maps (refer back to
Fig. 6(b) and 6(d) for the true diffusion coefficient distribution).
For the absorptive heterogeneity values of: 0.05, 0.1, and 1 cm1

(left to right), the inverse problem solution is plotted for the
orders N ¼ 1; 3; 5, and 7 (first, second, third, and fourth rows,
respectively). The diffusion coefficient reconstructions will
now be described for each value of the absorption coefficient
of the absorptive inclusion.

For μa ¼ 0.05 cm−1 (Fig. 7, first column of images), all SPN
orders image reconstructions are able to accurately localize the
scattering inclusion with a 5% to 6% error. The SP3 gives better
results, but only by a 1% better error than the others. The pre-
sence of the absorptive inclusion appears in the reconstructed
image with a moderate intensity (in light gray in the image; only
the peak of the distribution is clearly seen). Errors at this loca-
tion are 9%, 7%, 9%, and 10% for the orders N ¼ 1; 3; 5, and 7,
respectively. The background value of D (0.0416 cm) is accep-
tably recovered by all the SPN orders. Some artifacts can be seen
near the image boundary after an inspection of the image. Arti-
facts are more pronounced in the case of the SP1 reconstructed
image and in the high absorption case (1 cm−1).

For μa ¼ 0.1 cm−1 (Fig. 7, second column of images), all
SPN image reconstructions are able to accurately localize the

scattering inclusion. Errors for SP1, SP3, and SP5 are the
same: 6%. SP7 shows a 20% error but with a better spatially
delimited inclusion. As before, the presence of the absorptive
inclusion appears in the reconstructed image with moderate
intensity, although this time the visible spot is bigger due to a
higher value of the absorptive inclusion. These results show the
crosstalk effect between the absorption and diffusion coeffi-
cients and how it varies with the SPN order (the effect is stron-
gest for N ¼ 7). Errors at this location are 16%, 14%, 15%, and
3% for N ¼ 1; 3; 5, and 7, respectively. Small artifacts can be
observed near the boundary, which again are more pronounced
in the SP1 reconstructed image.

For μa ¼ 1 cm−1 (Fig. 7, last column of images), all SPN-
based image reconstructions are able to accurately localize the
scattering inclusion. However, the reconstructed images using
orders N ¼ 3; 5, and 7 qualitatively provide a better shaped,
recovered scattering inclusion in comparison with the original
distribution. The errors in the inclusion’s scattering coefficient
values are 6% for SP3 and SP5 and 15% for SP7. In the case of
SP1 reconstruction, the error is greater than 40%, showing its
failure to accurately quantify the effect of the scattering inclu-
sion in the presence of high absorption values. An examination
of the presence of the absorptive inclusion in the D-maps shows
that the visible area has increased in size because of the large μa
value of the absorptive inclusion (cross-talk). The area is better
delimited by the SP3 and SP7 reconstructions, followed by SP5
reconstruction. Finally, SP1 shows a highly irregular distribution
at the absorptive inclusion. Errors at this location are difficult to
quantify because of the irregular distribution of recovered opti-
cal coefficient values. The following estimates are obtained:
18%, 27%, and 8% for SP3, SP5, and SP7 reconstructions,
respectively. In the case of SP1 reconstruction, the error is
greater than 57%. As in the previous results, all images present

Fig. 6 Solution of the inverse problem(absorption coefficient) for the multiparametric case. Values of the absorption coefficient are: 0.05, 0.1, and
1 cm−1 (left to right columns of images). Images are plotted for the orders N ¼ 1, 3, 5, and 7 (first, second, third, and fourth rows, respectively). For
comparison, the black ring located at the top of the figures represents the inclusion’s shape at a height corresponding to its absorption coefficient value.
See text for precise numbers on the differences between reconstructed and true values.
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small artifacts near the boundary, with more pronounced arti-
facts in the SP1 reconstructed image.

From the previous results, it may be inferred that in the case
of multiparameter image reconstructions, orders higher than
N ¼ 1 provide an accurate localization of the scattering hetero-
geneity and acceptable retrieval of the background optical prop-
erties. The SPN diffusion coefficient reconstructions provide
images with better shaped inclusions for N > 1 when compared
with the original distributions. Also, SPN (N > 1) image recon-
structions better quantify the diffusion coefficient values at the
scattering inclusion than the DE reconstruction. In particular,
the reconstructed images using the SP3 approximation provide
the best estimates for the diffusion coefficient values at the scat-
tering inclusion. Furthermore, SPN (N > 1) image reconstruc-
tions better quantify the absorptive heterogeneity contribution
in the image than the DE. Particularly, SP7-based reconstruc-
tions give the best estimates for the diffusion coefficient values
where the absorptive inclusion is located, but the size of the
recovered inclusion is generally overestimated.

5 Comparison with Other Approaches
Theresults for multiparametric reconstructions obtained in the
previous section will now be shortly compared with previously
published works, Refs. 39, 42, 44, and 59. This is by no means
an attempt to be exhaustive, but it will nevertheless give an idea
about how our approach compares to others.

In Ref. 39, a DOTalgorithm based on the FD SPN equations is
presented. The forward model is discretized using the FEM (this
builds on the SPN-based forward model presented in Ref. 31).
The DOT algorithm uses an L2-norm Tikhonov minimization
approach and a Levenberg-Marquardt procedure for updating
the vector of optical properties. Multiparametric reconstructions
(absorption and scattering coefficients) are performed with

synthetic (noiseless) data. The inverse crime is strictly and pur-
posely committed in the numerical experiments. The multi-para-
metric reconstructions appearing in this work can be appreciated
in details in the presented figures. Comparing the results pre-
sented in Sec. 3.4 of Ref. 39 with those presented herein, it is
found that inclusion optical properties are better estimated by
the algorithm presented here. In addition, the algorithm fails to
recover the scattering heterogeneity position when the orderN ¼
7 is employed. The presence of cross-talk effects and image arti-
facts at the boundary is also mentioned by the authors. For
N ¼ 7, image artifacts are located thorough the domain. Finally,
high absorption regimes (∼1 cm−1) are not studied in Ref. 39.

In Ref. 59, the time-dependent radiative transfer equation
(RTE) is used in a model-based DOT algorithm. The RTE is
spatially discretized on a structured grid and the angular depen-
dence is approximated by a discrete ordinates procedure called
the piecewise parabolic method (PPM), which ensures numer-
ical stability.60 Adjoint methods are employed in the calculation
of the gradient of an objective square error function, similar to f
used here. The Polak–Ribière version of the nonlinear conjugate
gradient method is used in the reconstructions, see details in the
reference section of Ref. 59. 3D multiparameter reconstructions
(absorption and scattering coefficients) using noiseless data are
conducted. Although in two-dimensional (2D), the present algo-
rithm provides better estimates of the inclusions optical proper-
ties for similar experimental cases. Hence, it may be expected
that the present DOT algorithm can compete with that proposed
in Ref. 59 in 3D cases. However, more conclusive experiments
(same experimental conditions) would be needed, which is
beyond the scope of the present work.

An analysis of the results presented in Refs. 42 and 44, where
the RTE for FD problems is employed as the forward model and
the inverse problem is posed as a PDE-constrained optimization,

Fig. 7 Solution of the inverse problem(diffusion coefficient) for the multiparametric case. Images are plotted for the orders N ¼ 1, 3, 5, and 7 (first,
second, third, and fourth rows, respectively) where the absorptive heterogeneity takes the following values: 0.05, 0.1, and 1 cm−1 (left to right). These
values are in turn associated with the following values of D for the absorptive inclusion: 0.0414, 0.0412, and 0.0370 cm, respectively. As regards the
scattering inclusion, the value ofD that should be recovered is 0.0277 cm. For comparison, a blue and a black ring are located in the figure to represent
the absorption and the scattering inclusions’ shape at a height corresponding to its diffusion coefficient values. See text for precise numbers on the
differences between reconstructed and true values.

Journal of Biomedical Optics 086012-10 August 2012 • Vol. 17(8)

Bouza Domínguez and Bérubé-Lauzière: Diffuse optical tomographic imaging of biological media : : :



support the competitiveness of our DOT algorithm. In these
works, the solution of the inverse problem is sought through
an augmented Lagrangian42 and the reduced SQP44 method.
In Ref. 42, image artifacts and cross-talk effects which appear
in the image reconstructions are difficult to evaluate for noise-
free cases, mainly due to mesh effects (a different mesh is used
for generating synthetic data and in the inverse problem solu-
tion). In Ref. 44, in the case of an absorptive inclusion and
noise-free data, the background optical properties are not uni-
formly reconstructed, with large zones where the errors are
around 20%. Finally, a considerable amount of image artifacts
and cross-talk effects appears in the multiparametric reconstruc-
tions when 20 dB noise-added synthetic data is used. Hence,
future works should be conducted to evaluate noise effects in
our DOT algorithm and compared with these results in Ref. 44.

6 Conclusions
In this manuscript, a novel approach for solving inverse pro-
blems in time-domain diffuse optical tomography is presented.
A finite element-finite difference discretized formulation of the
time-dependent parabolic SPN equations is used as the forward
model. In this way, complex geometries and heterogeneous dis-
tributions of the optical coefficients can be imaged. To achieve
image reconstruction, an optimization method which includes
bounds onthe optical coefficient values as additional linear con-
straints is implemented. The algorithm incorporates some neces-
sary features for dealing with large-scale TD data. First, the
implementation employs the nested analysis and design method
to reduce the dimensionality of the problem. Therefore, even
when TD data are dealt with, only the set of optical coefficients
evaluated at the mesh nodes has to be recovered. Second, adjoint
variables are introduced in the calculations. These reduce the
computation time and provide an exact formula for the calcula-
tion of the gradient of the OF.

Several numerical experiments were performed for a small
geometric medium with homogeneous background optical prop-
erties that mimic small animal imaging conditions. In a first
round of experiments, an absorptive inclusion with increasing
absorption coefficient values of 0.05, 0.1, and 1 cm−1 was posi-
tioned into an otherwise homogeneous medium. These values
were chosen to simulate practical situations encountered in
DOT and FDOT small animal imaging. Synthetic TD data
were generated in the simulations and used to solve the inverse
problem for all the SPN orders studied in the literature. The
inverse crime was committed in the numerical experiments, as
the goal here was to evaluate the accuracy of each SPN order in
determining the optical coefficient distributions. Noise-free TD
data are employed in the calculations for the same reason. An
analysis of the results showed that, in all the physical situations
considered, the image reconstructions based on the SPN (N > 1)
provide an accurate localization of the absorptive heterogeneity
and retrieval of the background optical properties. In addition,
the SPN (N > 1) better estimated the absorption coefficient
values of the heterogeneity than the DE. In the simulations,
the reconstructed images using the SP3 approximation provide
the best estimates of absorption coefficient distributions. The
DE consistently provided the worst estimates with an error of
near 20% for high absorption values at the inclusion.

In a second round of experiments, an absorptive inclusion
with increasing absorption coefficient values of 0.05, 0.1, and
1 cm−1 was placed in the homogeneous medium along with
a second inclusion about half the size of the first, with optical

properties identical to those of the homogeneous medium,
except for the scattering coefficient to which a value of
120 cm−1 was assigned. Using synthetic data collected at the
boundary of the medium, a simultaneous reconstruction of
the absorption and diffusion coefficient distributions was per-
formed. The inverse crime was committed again in the numer-
ical experiments. The absorption coefficient reconstructions
showed that orders higher than N ¼ 1 provide accurate locali-
zations of the absorptive heterogeneity and an acceptable retrie-
val of the background optical properties. Moreover, they better
quantify the absorption coefficient values of the inclusion than
the DE. The SP3 approximation stood outas the model providing
the best results, followed by N ¼ 5 and 7. The cross-talk effect
appeared in the reconstructed images, reinforcing the absorption
coefficient values of the inclusion. The cross-talk effect
increases with increasing order N. Similar results were gathered
for the diffusion coefficient reconstructions. The image recon-
structions based on the SPN (N > 1) approximations provide
accurate localizations of the scattering heterogeneity and accep-
table retrieval of the background optical properties. In addition,
they better quantify the values of the diffusion coefficient at the
second inclusion (except for the SP7), and the effect of the
absorptive heterogeneity in the diffusion coefficient maps. Par-
ticularly, SP3 approximation provides the best estimates for dif-
fusion coefficient values at the scattering inclusion. The SP7
approximation gives the best estimates for diffusion coefficient
values at the absorptive inclusion when μa ¼ 0.1 and 1 cm−1.
The estimates of the optical properties of the absorptive inclu-
sion by the DE reconstructions resulted in the worst values of all
the orders, especially in the case of high absorption. In that case,
the errors hamper any kind of estimation of the optical properties
of scattering or absorptive inclusions. Cross-talk effects
appeared in the reconstructed images in the form of small arti-
facts at the boundary, with these artifacts being more or less pro-
nounced depending on the order. In the DE reconstructions,
artifacts have a more significant contribution to the image.

The results obtained in this work indicate that our DOT algo-
rithm can accurately substitute DE algorithms, especially in
physical situations where the DE fails. The methods developed
here can be used in further studies to 1. analyze the effect of
other optical parameters in DOT reconstructions, such asthe ani-
sotropy parameter, and perhaps eventually the refractive index,
and 2. as a starting point for more elaborate optimization algo-
rithms with other types offunctionals and additional constraints,
and 3. it could eventually be reused with more accurate forward
models.
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Appendix A
In this Appendix, the structure of the matrices C, T, the matrix
operatorDr and the source vectorQ are provided up to the order
N ¼ 7, which is the highest SPN order studied in the literature.
In addition, the FEM matrices and vectors appearing in Eqs. (3)
and (4) are given.
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MatrixC has the form (Matlab notation is used for specifying
the columns)

Cð∶;1Þ¼

2
666664

μ0ðrÞ
−2

3
μ0ðrÞ

8
15
μ0ðrÞ

−16
35
μ0ðrÞ

3
777775
; Cð∶;2Þ¼

2
666664

−2
3
μ0ðrÞ

4
9
μ0ðrÞþ 5

9
μ2ðrÞ

−16
45
μ0ðrÞ− 4

9
μ2ðrÞ

32
105

μ0ðrÞþ 8
21
μ2ðrÞ

3
777775
;

Cð∶;3Þ¼

2
666664

8
15
μ0ðrÞ

−16
45
μ0ðrÞ− 4

9
μ2ðrÞ

64
225

μ0ðrÞþ 16
45
μ2ðrÞþ 9

25
μ4ðrÞ

−128
525

μ0ðrÞ− 32
105

μ2ðrÞ− 54
175

μ4ðrÞ

3
777775
;

Cð∶;4Þ¼

2
666664

−16
35
μ0ðrÞ

32
105

μ0ðrÞþ 8
21
μ2ðrÞ

−128
525

μ0ðrÞ− 32
105

μ2ðrÞ− 54
175

μ4ðrÞ
256
1225

μ0ðrÞþ 64
245

μ2ðrÞþ 324
1225

μ4ðrÞþ 13
49
μ6ðrÞ

3
777775
:

(A1)

The matrix T, and consequently T−1, do not depend on the med-
ium optical coefficients and have the following structure

T ¼

2
666664

1 − 2
3

8
15

− 16
35

0 1
3

− 4
15

8
35

0 0 1
5

− 6
35

0 0 0 1
7

3
777775
;T−1 ¼

2
6664
1 2 0 0

0 3 4 0

0 0 5 6

0 0 0 7

3
7775: (A2)

The matrix operator Dr is a diagonal 4 × 4 matrix operator
whose diagonal elements are given by

diagðDrÞ

¼ −
�
∇
�

1
3μ1

∇
�
; ∇

�
1
7μ3

∇
�
; ∇

�
1

11μ5
∇
�
; ∇

�
1

15μ7
∇
��

;

(A3)

where the expression diagðÞ is used to list the diagonal elements.
Finally, the source vector Qðr; tÞ contains the information about
the source distribution Qðr; tÞ

Qðr; tÞ ¼ Qðr; tÞ
h
1 − 2

3
8
15

− 16
35

i
T
: (A4)

In the FEM, the domain of interest V is partitioned into l
nonoverlapping elements τj, j ¼ 1; : : : l joined at d vertex
nodes. The boundary of V, denoted as ∂V, will be assumed
to have db nodes. In the following, the index
lN ¼ ðN þ 1Þ∕2 where N is the order of the SPN approximation
is used for convenience.

The square sparse matrix K̃ is a block diagonal matrix com-
posed of elemental “stiffness” matrices fK̃kgk¼1; : : : ;lN whose
entries are given by

K̃kði; jÞ ¼
Z
V

1

ð4k − 1Þμ2k−1
∇uiðrÞ · ∇ujðrÞdV;

k ¼ 1; : : : ; lN; i; j ¼ 1; : : : ; d;

(A5)

where μk ¼ μa þ μsð1 − gkÞ are the transport coefficients, see
Ref. 32. The square sparse matrices M̃, Π̄, and T̃ are composed
of lN × lN block “mass” matrices fM̃k1;k2gk1;k2¼1; : : : ;lN

,
fΠ̃k1;k2gk1;k2¼1; : : : ;lN

, fT̃k1;k2gk1;k2¼1; : : : ;lN
whose entries are,

respectively given by

M̃k1;k2ði; jÞ ¼
Z
V
Cðk1; k2ÞuiðrÞujðrÞdV;

k1; k2 ¼ 1; : : : ; lN; i; j ¼ 1; : : : ; d;
(A6)

Π̃k1;k2ði; jÞ ¼
Z
∂V

Θðk1; k2Þ
ð4k1 − 1Þμ2k1−1

uiðrÞujðrÞdσ;

k1; k2 ¼ 1; : : : ; lN; i; j ¼ 1; : : : ; d;

(A7)

T̃k1;k2ði; jÞ ¼
Z
V
Tðk1; k2ÞuiðrÞujðrÞdV;

k1; k2 ¼ 1; : : : ; lN; i; j ¼ 1; : : : ; d:
(A8)

In Eq. (A6) and (A8), Cðk1; k2Þ and Tðk1; k2Þ are the ele-
ments of the matrices C and T given in Eqs. (A1) and (A2),
respectively. In Eq. (A7), the term Θ ¼ ðk1; k2Þ represents
the elements of the matrix Θ ¼ ðBÞ−1A which originates
from the SPN boundary conditions, see Ref. 32. The matrices
A and B have the following form

A ¼

2
6664

1∕2þ A1 −1∕8 − C1 1∕16 − E1 −5∕128 − G1

−1∕8 − C2 7∕24þ A2 −41∕384 − E2 1∕16 − G2

1∕16 − C3 −41∕384 − E3 407∕1920þ A3 −233∕2560 − G3

−5∕128 − C4 1∕16 − E4 −233∕2560 − G4 3023∕17920þ A4

3
7775; (A9)

B ¼

2
6664
ð1þ B1Þ∕3μ1 −D1∕μ3 −F1∕μ5 −H1∕μ7
−D2∕3μ1 ð1þ B2Þ∕7μ3 −F2∕μ5 −H2∕μ7
−D3∕3μ1 −F3∕μ3 ð1þ B3Þ∕11μ5 −H3∕μ7
−D4∕3μ1 −F4∕μ3 −H4∕μ5 ð1þ B4Þ∕15μ7

3
7775: (A10)

The explicit expressions for the coefficients
(A1; : : : ; H1, A4; : : : ; H4) can be found in Appendix
A of Ref. 29. The vectors F̃ðmÞ and Γ̃ðmÞ are composed

of fF̃ðmÞ
k gk¼1; : : : ;lN

and fΓ̃ðmÞ
k gk¼1; : : : ;lN

“elemental
load vectors” evaluated at the time step m. Their entries
are
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F̃ðmÞ
k ðiÞ ¼

Z
V
QðmÞðkÞuiðrÞdV; k ¼ 1; : : : ; lN; i ¼ 1; : : : ; d; (A11)

Γ̃ðmÞ
k ðiÞ ¼

Z
∂V

GðmÞðkÞ
ð4k − 1Þμ2k−1

uiðrÞdσ; k ¼ 1; : : : ; lN; i ¼ 1; : : : ; d: (A12)

In Eq. (A11), QðmÞðkÞ are the components of the source
vector Eq. (A4) evaluated at time step m. In Eq. (A12),
GðmÞðkÞ are the elements of the vector G ¼ B−1S where

the column vector S is related to the transmitted contribu-
tion of the exterior source (the exterior source power multi-
plied by the transmission coefficient) BTðr; ŝ; tÞ as

S ¼

2
66666664

R
ŝ·n̂>0 BTðr; ŝ; tÞ2jŝ · n̂jdΩR

ŝ·n̂>0 BTðr; ŝ; tÞ
h
5jŝ · n̂j3 − 2jŝ · n̂j

i
dΩR

ŝ·n̂>0 BTðr; ŝ; tÞ
h
63
4
jŝ · n̂j5 − 35

2
jŝ · n̂j3 þ 15

4
jŝ · n̂j

i
dΩR

ŝ·n̂>0 BTðr; ŝ; tÞ
h
429
8
jŝ · n̂j7 − 693

8
jŝ · n̂j5 þ 315

8
jŝ · n̂j3 − 35

8
jŝ · n̂j

i
dΩ

3
77777775
; (A13)

where ŝ and n̂ are unit vectors denoting direction and the
normal to the boundary ∂V, respectively.

Appendix B
The vectors j1 and j2 have the following expressions

j1 ¼ ½1∕4þ J0; ð1∕4þ J0Þð−2∕3Þ
þ ð5∕16þ J2Þð1∕3Þ; ð1∕4þ J0Þð8∕15Þ
þ ð5∕16þ J2Þð−4∕15Þ þ ð−3∕32þ J4Þð1∕5Þ; : : :

ð1∕4þ J0Þð−16∕35Þ þ ð5∕16þ J2Þð8∕35Þ
þ ð−3∕32þ J4Þð−6∕35Þ þ ð13∕256þ J6Þð1∕7Þ�;

(B1)

j2 ¼
�
−
�
0.5þ J1
3μ1

�
;

�
−

J3
7μ3

�
;

�
−

J5
11μ5

�
;

�
−

J7
15μ7

��
;

(B2)

where the coefficients fJigi¼1; : : : ;4 linearly depend on the angu-
lar moments of the angle-dependent Fresnel reflection coeffi-
cient RFðθÞ.61 The explicit expressions for the coefficients
J0, J1; : : : ;J7 can be found in Appendix A of Ref. 29.
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