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Abstract. A wide variety of ocular diseases are associated with abnormalities in ocular circulation. As such,
there is considerable interest in techniques for quantifying retinal blood flow, among which Doppler optical
coherence tomography (OCT) may be the most promising. We present an approach to measure retinal
blood flow in the rat using a new optical system that combines the measurement of blood flow velocities
via Doppler Fourier-domain optical coherence tomography and the measurement of vessel diameters
using a fundus camera-based technique. Relying on fundus images for extraction of retinal vessel diameters
instead of OCT images improves the reliability of the technique. The system was operated with an 841-nm
superluminescent diode and a charge-coupled device camera that could be operated at a line rate of 20 kHz.
We show that the system is capable of quantifying the response of 100% oxygen breathing on the retinal blood
flow. In six rats, we observed a decrease in retinal vessel diameters of 13.2% and a decrease in retinal blood
velocity of 42.6%, leading to a decrease in retinal blood flow of 56.7%. Furthermore, in four rats, the response
of retinal blood flow during stimulation with diffuse flicker light was assessed. Retinal vessel diameter and
blood velocity increased by 3.4% and 28.1%, respectively, leading to a relative increase in blood flow of
36.2%. The presented technique shows much promise to quantify early changes in retinal blood flow during
provocation with various stimuli in rodent models of ocular diseases in rats. © The Authors. Published by SPIE under a
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1 Introduction
Abnormalities in ocular blood flow have been connected with a
variety of ocular diseases including diabetic retinopathy, age-
related macular degeneration, and glaucoma.1–5 However,
quantification of retinal blood flow is difficult. Color
Doppler imaging measures blood velocities in retrobulbar ves-
sels, but no information on vessel diameters is available.6 Laser
Doppler flowmetry and speckle flowgraphy can be used to
assess choroidal and optic nerve blood flow in relative
units.7,8 For several years, the only technique providing infor-
mation about retinal blood flow was the combined measure-
ment of retinal blood velocity via laser Doppler velocimetry
(LDV) and of vessel diameters using fundus photographs.9

By measuring retinal vessel diameters using the dynamic ves-
sel analyzer (DVA) and retinal blood velocities using bi-direc-
tional LDV, however, it was shown that the range of retinal
blood flow values in healthy humans is wide.10 As such, it
may be more attractive to study the response of the retinal vas-
culature to stimuli such as flicker light or 100% oxygen

breathing. Indeed, it has been shown that the hyperemic
response to flicker stimulation11,12 and the vasoconstrictor
response to 100% oxygen breathing are compromised in
early diabetic retinopathy.13

In the recent years, optical coherence tomography (OCT), a
noninvasive high-resolution imaging technique that offers the
possibility of performing in vivo optical ‘‘biopsy’’ of tissue
structures, has become standard in the imaging of the anterior
and posterior segments of the eye.14 Doppler OCT, as a func-
tional extension of OCT, allows the extraction of phase
shifts in the backscattered light, thus the ability to gain informa-
tion on movements in the probed tissue region.11,12,15 Recently,
several systems were realized aiming toward the quantification
of retinal blood flow using Doppler OCT in humans.16–20

We set out to develop a novel system that is capable of
measuring changes in retinal blood flow in the rat. The system
uses the combination of Fourier-domain Doppler OCT for the
extraction of retinal blood velocities and a fundus camera-
based optical part of the system for the measurement of retinal
vessel diameters. The capability of this system to quantify
changes in retinal blood flow during 100% oxygen breathing
and stimulation with diffuse luminance flicker was demon-
strated in vivo.

*Address all correspondence to: Leopold Schmetterer, E-mail: leopold
.schmetterer@meduniwien.ac.at

Journal of Biomedical Optics 106008-1 October 2014 • Vol. 19(10)

Journal of Biomedical Optics 19(10), 106008 (October 2014)

http://dx.doi.org/10.1117/1.JBO.19.10.106008
http://dx.doi.org/10.1117/1.JBO.19.10.106008
http://dx.doi.org/10.1117/1.JBO.19.10.106008
http://dx.doi.org/10.1117/1.JBO.19.10.106008
http://dx.doi.org/10.1117/1.JBO.19.10.106008
http://dx.doi.org/10.1117/1.JBO.19.10.106008
mailto:leopold.schmetterer@meduniwien.ac.at
mailto:leopold.schmetterer@meduniwien.ac.at
mailto:leopold.schmetterer@meduniwien.ac.at
mailto:leopold.schmetterer@meduniwien.ac.at


2 Methodology

2.1 Doppler Fourier-Domain-Optical Coherence
Tomography

Blood flow velocity measurements were carried out via Doppler
Fourier-domain OCT (FDOCT) operating in the near-infrared
wavelength range. To measure blood flow velocities via
FDOCT, the phase difference ΔΦðzÞ at the same point between
adjacent A-line recordings after Fourier transform was calcu-
lated. Since one only has access to phase changes parallel to
the incident probe beam direction, the tilting angle between
the velocity vector under study and the probe beam, i.e., the
Doppler angle, has to be taken into account. The flow velocity
V is then given by

VðzÞ ¼ ΔΦðzÞ λ0
4πnτ cos α

; (1)

where λ0 is the central wavelength of the light source and τ is the
time period between subsequent A-scans. n in Eq. (1) denotes
the group refractive index of blood which was—as an average
of values for 632.8 and 1080 nm21—estimated to be 1.37. The
theoretic maximum accessible longitudinal velocity Vmax is lim-
ited by the detection speed of the charge-coupled device (CCD)
and can be obtained from Eq. (1); with a central wavelength of
841 nm and an A-scan rate of 20 kHz and assuming ΔΦmax ¼ π
and α ¼ 0, it amounts to 3 mm∕s. However, since the measure-
ments presented here were performed on the posterior pole of
the eye on vessels around the optic nerve head (ONH)—with
a distance of about one to two disk diameters from its rim—
the incidence angle is much larger, in the range of 90 deg,
and higher velocity values can be measured. Vmax without
any wrapping artifacts was—depending on the Doppler angle—

in the range of 10 to 20 mm∕s. Yet higher velocities can be
measured by compensating for the wrapping artifacts as
described in the next section. The minimum velocity is given
by the phase noise ΔΦerr present in the system, and can–for a
single-beam Doppler OCT system–calculated as Vmin ¼
λ · ΔΦ∕ð4π · τÞ.22 However, this equation only holds true for
a Doppler angle of zero degrees, which does not hold when
measurements are performed in the posterior pole of the
eye. With the phase noise of ΔΦerr ¼ 0.18 rad, measured when
scanning was performed, we were able to assess velocities as
low as 2.5 mm∕s.

The optical setup of the measurement system is depicted in
Fig. 1. As light source, a superluminescent diode (Superlum,
Carrigtwohill, Cork, Ireland) with a central wavelength λ0 of
841 nm and a full width at half maximum bandwidth Δλ of
50 nm was used. This resulted in an axial resolution in air
of 6 μm. A beamsplitter with a splitting ratio of 50:50 divided
the light coming from the source into the sample and reference
arms. The free-space pathway of the reference arm contained a
variable neutral density (ND) filter and a pair of prisms for bal-
ancing dispersion due to the optic components in the sample
arm. In the sample arm, light was collimated by means of a
fiber collimator, passed two galvanometric mirrors (GVS002;
Thorlabs GmbH, Dachau/Munich, Germany) for scanning in
two dimensions, and illuminated the eye via the lenses L1
and L2, where L2 is the ophthalmic lens of the retinal vessel
analyzer. The interference spectrum returning from the interfer-
ometer was directed onto a 50 × 50 mm transmission grating
with L ¼ 1200 lines per mm (Wasatch Photonics, Logan, Utah)
using a collimator with a focal length f ¼ 100 mm (OZ Optics,
Ottawa, Canada). The dispersed light emerging from the trans-
missive grating was imaged onto a CCD camera (Atmel AVIIVA
M2 CL2014, Aviva, Essex, UK) with a pixel size of 14 × 14 μm
by means of an achromatic lens (f ¼ 100 mm).

Fig. 1 Schematic representation of the Doppler optical coherence tomography (OCT) system and cou-
pling to the rat fundus camera. SLD, superluminescent diode; PC, polarization controller; OI, optical iso-
lator; FC, fiber collimator; BS, beam splitter cube; NDF, neutral density filter; DC, dispersion
compensation; Mi , Mirror; DM, dichroic mirror; L1, L2, lens; HL, halogen lamp; DG, diffraction grating;
CL, camera lens; HM, hole mirror.
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The transversal resolution, given by the diameter of the col-
limated probe beam at the cornea and the focal length of the rat
eye, is approximately 11 μm. The oversampling factor (OF) of
the phase tomograms is defined as OF ¼ w · N∕d, where w is
the spot size, N is the number of sampling points, and d is the
geometric width of the tomogram.23 With the above given spot
size, N ¼ 1000 sampling points for in vivomeasurements, and a
scan width of 1.1 mm, one obtains an OF of 10. The power of
the probe beam incident on the rats’ corneas was measured to be
650 μW. The time period τ between two subsequent CCD
recordings (A-scan) was set to 50 μs, which—with a lateral
tomogram dimension of 1000 A-lines for in vivo measure-
ments—gives a frame rate of 20 s−1.

As a first OCT postprocessing step, the tomograms were cor-
rected for sample motion using a histogram-based method.24,25

Vessel positions within the tomogram were detected via convo-
lution of the phase image with an elliptical template.

Phase values calculated via Fourier transform lie in the range
½þπ;−π�. However, in larger arteries and veins, where flow
velocities are quite high, phase values can exceed this unam-
biguous range, leading to phase wrapping artifacts. These arti-
facts result in a seeming reversal of the flow in the vessel center.
By determining the “true” flow direction close to the vessel wall
and adding or subtracting 2π to/from the corresponding phase
value, these regions were unwrapped.

Further, several postprocessing steps were performed: missing
Doppler data points that occur as a result of fringe washout, par-
ticularly in the center of the vessel, were reconstructed by apply-
ing a parabolic fit to the available data points.18 In addition,
resampling of the vessel data using bi-cubic interpolation was
employed for achieving equal lateral and axial resolution. For
the calculation of the average phase within the vessel cross-sec-
tional area, the circular approach introduced by Szkulmowska et
al.26 was used. Briefly, the method uses the fact that the phase
differencesΔΦ are randomly distributed around the actual values.
When phase averaging is performed in the angular domain, this
leads to an underestimation of the mean phase difference, espe-
cially at high velocities close to the�π limit. Therefore, the phase
values are transformed into a complex representation and the
averaging is performed by calculating the argument of the com-
plex sum. The average flow velocity Vavg was computed over a
minimum of four to five pulse periods.

Retinal vessel diameters were assessed by means of a fundus
camera-based DVA system (DVA rodent, Imedos, Jena,
Germany) that does not require contact with the eye, and
does not influence the retinal microcirculation. Recently, the
application of the DVA technique in rodents has been described

for such a system using a retinal camera adapted to the rat eye,
an illumination unit and the DVA software platform also used
for the human system.27 The DVA system used for the current
experiments allows for the online measurements of retinal
arterial and venous diameters with excellent reproducibility.8

This is because the optical system is adapted specifically to
the optical properties of the rat eye with its specific illumination
and imaging requirements. The measurement resolution of the
system is, due to the higher magnification as compared to the
human system and the applied algorithms for vessel boundary
detection, up to 0.1 μm. This allows for assessment of vessel
diameters in retinal vessels down 30 μm in both pigmented
and nonpigmented animals.

The Doppler OCT and the DVA rodent were coupled by
means of a dichroic mirror DM, placed between the ophthalmic
lens L2 and the hole mirror HM of the DVA system. This
dichroic mirror lets the DVA’s light in the visible wavelength
range pass unimpeded while redirecting the OCT probe beam
(near-infrared wavelength range) into the fundus cameras’ opti-
cal path.

2.2 Animal Preparation

The study followed the association for research in vision and
ophthalmology statement for the use of animals in ophthalmic
and vision research and was approved by the ethical committee
of the Medical University of Vienna. Six male Sprague–Dawley
rats with a body weight of 400 to 600 g were used in the experi-
ments. Anesthesia was induced with a mixture of 100 mg∕kg
ketamine and 5 mg∕kg xylazine, injected intraperitoneally.
The rodents were intubated and, during the surgical procedure,
ventilated with O2, air and 2% isofluran. Via a venous access,
the animals were given a bolus of 20 mg∕kg gallamine triethio-
dide (Sigma Aldrich, Vienna, Austria; G8134) followed by a
continuous intravenous infusion of 50 mg∕kg∕h ketamine,
0.05 mg∕kg∕h fentanyl, and 20 mg∕kg∕h gallamine triethio-
dide (Sigma Aldrich; G8134). To maintain good imaging
properties, the eyes of the rats were continuously moistened
with hyaluronic acid containing eye drops (Hylo-Comod®
1 mg∕ml sodium hylauronat; Ursapharm, Saarbrücken,
Germany). In all animals, only the right eye was used for mea-
surements. After the experiments, the rodents were euthanized
via cervical dislocation and exsanguination.

2.3 Measurement Protocol

All results presented in this paper were gained from blood flow
velocity and vessel diameter measurements in large retinal

Fig. 2 Measurement protocols: timelines for (a) hyperoxia and (b) flicker experiments.
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vessels. The measurement protocol for the hyperoxia experi-
ments is shown in Fig. 2(a): the rodents were narcotized and
ventilated with ambient air for 10 min. Thereafter, 100% oxygen
was administered for another 10 min. In each animal, one major
retinal vein was selected and measurements were carried out at a
distance of about one disk diameter from the ONH. Starting at
8 min of the air breathing phase, the vessel diameters were con-
tinuously recorded during the whole session. Blood flow veloc-
ity measurements were performed at 8 and 9 min of the air
breathing phase (baseline) and at 2, 4, 6, 8, 9, and 10 min of
the oxygen breathing phase. The OCT recordings lasted 14 s
to allow averaging of the phase data and calculating the mean
blood flow velocities.

For all light stimulus experiments, the ambient light was
dimmed to avoid corruption of the measured effects. Diffuse
flicker illumination was applied at a frequency of 12 Hz via
the fundus illumination path of the DVA. Each measurement
session started with fundus illumination on: both the vessel
diameter (via DVA) and blood flow velocity (via Doppler
OCT) were measured at time point zero. After 60 s, the fundus
illumination was switched off and Doppler OCT measurements
were performed at time points 80 and 200 s. The dark phase
lasted 3 min. Thereafter, the diffuse flicker phase started and
lasted 60 s. Again, both vessel diameter and blood flow velocity
of a single retinal vessel were measured at time point 260 s. At
time point 300 s, the flicker illumination was switched off and
the rat’s fundus was illuminated via the DVA’s halogen lamp for
60 s. At time point 320 seconds, further Doppler OCT and DVA
measurements were performed before switching off the fundus
illumination and repeatedly measuring flow velocities at time
points 380 and 500 s. The timeline for the conducted measure-
ments is depicted in Fig. 2(b).

2.4 Statistical Analysis

Descriptive analysis was used to characterize the data. Changes
over baseline were analyzed using a repeated measures ANOVA
model. All data are presented as means� SD. A p-value <0.05
was considered the level of significance. Statistical analysis was
carried out using CSS Statistica for Windows® (Statsoft Inc.,
Version 6.0, Tulsa, California).

3 Results
Two phase tomograms as obtained from Doppler measurements
on a rat’s retina are shown in Fig. 3. In Fig. 3(a), the phase tomo-
gram including a vein with a diameter of approximately 50 μm
or 100 pixels under basal conditions is shown. The measured
vessel clearly shows a wrapping artifact in the center. The
phase profile within the vessel after unwrapping is depicted
in Fig. 3(c) and is close to parabolic. In Fig. 3(b), the phase
tomogram of the same vein is shown during 100% oxygen
breathing. In the phase tomogram, the vasoconstriction, indi-
cated by a smaller vessel lumen, and the reduction in blood
velocity, cognizable by the disappearance of the wrapping arti-
fact, are clearly visible. This is also evident from the phase pro-
file presented in Fig. 3(d), which, despite the largely reduced
blood velocity, remains almost parabolic and shows a decrease
of the vessel diameter by about 15 pixels.

In Fig. 4, the time courses of vessel diameter (black line),
relative blood flow velocity (red squares), and relative blood
flow (blue squares) in a single retinal vessel during breathing
of 100% oxygen are depicted. As seen, the vessel diameter starts
to decrease soon after the beginning of the 100% oxygen breath-
ing. At approximately 360 s, full vasoconstriction is obtained
and, thereafter, the vessel diameter remains constant. The

Fig. 3 Phase tomograms including a retinal vein and extracted phase profile (a), (c) under baseline con-
ditions and (b), (d) during breathing 100% oxygen. The extracted phase is directly proportional to the
blood velocity.

Journal of Biomedical Optics 106008-4 October 2014 • Vol. 19(10)

Werkmeister et al.: Measurement of retinal blood flow in the rat by combining Doppler Fourier-domain. . .



pronounced reduction in retinal blood velocity and retinal blood
flow is already visible 120 s after the start of oxygen breathing
(i.e., 240 s after the beginning of the experiment). In agreement
with the diameter data, almost stable conditions are achieved at
360 s after the start of the experiment. Both velocity and flow
decrease almost in parallel because the reduction in blood veloc-
ity is more pronounced than the reduction in vessel diameter or
vessel cross-sectional area.

The average data as obtained in the six rats are presented in
Fig. 5. At 600 s after the start of the oxygen breathing, we
observed a reduction of 42.6� 5.2%, 13.2� 5.2%, and 56.7�
7.4% in blood flow velocity, vessel diameter and blood flow,
respectively (p < 0.001 versus baseline each).

The time courses of the vessel diameter, blood flow velocity,
and blood flow in one rat during stimulation with diffuse flicker
light are presented in Fig. 6. During the dark periods, no mea-
surements of vessel diameters via DVA were carried out.
Typically, a short-lasting increase in vessel diameters was
immediately seen after changing from dark to flicker

stimulation, but the vessel diameter returned almost to its base-
line value thereafter. In contrast, Doppler OCT data could be
also obtained during the dark periods. As seen, the retinal
blood velocity was typically slightly lower in the dark as com-
pared to the light conditions. Since no information on the vessel
diameter was available, no flow values were calculated during
darkness. Stimulation with flicker light increased both blood
velocity and blood flow. During lightening conditions, the reti-
nal blood velocity stayed elevated as compared to darkness.

In Fig. 7, the average increase in retinal blood velocity, vessel
diameter, and blood flow in all four rats during the experiments
is shown. The transition from light to dark did not change the
blood velocity [Fig. 7(a)]. During flicker stimulation, on the
other hand, a pronounced increase in blood velocity of
28.1% was observed (p < 0.001 versus baseline). When the dif-
fuse luminance flicker was turned off, the blood velocity
decreased slightly but was still higher than at baseline
(p < 0.001). When the light was turned off, however, the retinal
blood velocity returned to baseline again.

Fig. 4 Time courses of retinal venous diameter D, phase shift (ΔΦ) and blood flow (Q) during 100%
oxygen breathing. Red symbols indicate the phase shift, which is proportional to the mean blood
flow velocity. VF, ventilator frequency. Dashed lines indicate the change of breathing gases.

Fig. 5 Time courses of the relative change in (a) blood flow velocity, (b) venous diameter and (c) blood
flow during 100% oxygen breathing (n ¼ 6). Data are presented as means� SD. The vertical line indi-
cates the onset of 100% oxygen as breathing gas.
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Figures 7(b) and 7(c) show the effect of flicker stimulation on
retinal vessel diameter and retinal blood flow. Retinal vessel
diameters slightly increased by 3.6% during flicker stimulation
(p < 0.05 versus baseline) and returned to the baseline value
thereafter. The retinal blood flow showed a strong increase
(36.2%, p < 0.001 versus baseline) during flicker stimulation
and stayed elevated after cessation.

4 Discussion
So far, no gold standard technique for the measurement of ocular
blood flow has been realized.6,19,28–30 Doppler OCT is a prom-
ising approach for measuring retinal blood flow. If absolute

blood flow is to be measured, the angle ambiguity of the
Doppler techniques has to be resolved. In humans, several tech-
niques were realized to quantify retinal perfusion.7,16,18,20,25,31–36

In rats, a technique was proposed to measure the axial blood
velocity in an en-face plane using raster scanning in a very
small area around the central retinal artery. The retinal blood
flow was calculated by integrating over the vessel area.20 For
measurements of pulsatile total flow, very high acquisition
speeds with axial scan rates in the range of several 100 kHz
are necessary. In addition, transverse sampling density has to
be sacrificed. Alternatively, gated acquisition can be applied
to observe pulsatile retinal flow.36 Other investigators used a

Fig. 6 Time courses of retinal venous diameter D, phase shift (ΔΦ) and blood flow (Q) during flicker
stimulation. Red symbols indicate the time course of the phase shift, which is proportional to the
blood flow velocity. During the periods in darkness no flow values are available, because vessel diameter
was not measured.

Fig. 7 Time courses of the relative change in (a) blood flow velocity, (b) vessel diameter and (c) blood
flow during flicker stimulation (n ¼ 4). Data are presented as means� SD. Dashed lines indicate the
onset of the flicker stimulus.
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volumetric scanning protocol that asynchronously samples a
single vessel with respect to the heartbeat, thus determining
the averaged total blood flow.37

However, to which degree it is useful to study total retinal
blood flow in the rat is unclear. In humans, total retinal
blood flow shows a wide range in healthy subjects10 and it is
doubtful whether absolute blood flow measurements can be
used for risk stratification in ocular disease. In rats, this is
even more doubtful given the potential influence of anesthesia
and the selected blood pressure value. As such, we focused on
relative changes in retinal blood flow. One characteristic of our
system is that it is coupled to a fundus camera allowing for the
high-precision extraction of retinal vessel diameters from the
fundus image, which is considered the gold standard technique
for measuring retinal vessel width.38 This is a critical issue,
because the diameter of the vessels enters into the calculation
of blood flow with the second order. Most other approaches
determine the diameter from the OCT amplitude or phase
images. The former method is difficult because of light scatter-
ing and absorption in retinal vessels, which often makes it com-
plicated to identify the rear vessel wall. The latter is hampered
by the phase noise and the lower limit of detectable velocity,
which may lead to a velocity-dependent underestimation of
the vessel width. However, both techniques are limited by the
longitudinal resolution of OCT systems, which is usually in
the range of 5 to 7 μm.

In the present study, we used hyperoxia as a stimulus, which
induces pronounced vasoconstriction. A variety of techniques
were previously used to characterize the retinal blood flow
response to 100% oxygen breathing including magnetic reso-
nance imaging39 and scanning laser Doppler flowmetry.40

These earlier studies reported a reduction in retinal blood
flow of 25% and 24.5%, respectively. Our data show a reduction
of 50 to 60% in retinal blood flow, which is closer to the values
obtained in humans.41–46 Studying the response of retinal blood
flow to hyperoxia is interesting, because it has been shown to be
disturbed early in diabetes.47 However, the mechanisms which
lead to this reduced vasoconstrictor response to hyperoxia are
poorly understood.48,49

In contrast to hyperoxia, flicker light increases retinal blood
flow due to a mechanism called neurovascular coupling.
Increased neural activity as induced by light stimulation leads
to an increased metabolic demand and to hyperemia of the retina
and the ONH.50–52 Several techniques were used to assess the
retinal blood flow response to flicker stimulation including
laser speckle flowgraphy,53–55 fluorescent microspheres,8 the
measurement of retinal vessel diameters,56 and Doppler
OCT.57 Our results indicate that most of the increase in retinal
blood flow is due to the increase in blood velocity, whereas reti-
nal vessel diameters showed only minor changes. This is in good
agreement with human data indicating that most of the vasodi-
lator response occurs in the microvasculature.58 A reduction in
the retinal response to flicker stimulation can be seen in diabetic
patients before any change in pattern electro-retinography
becomes evident.59 In diabetic rats, the abnormal retinal flicker
response can be normalized by inhibition of inducible nitric
oxide synthase.56

In conclusion, we presented a method for measuring relative
changes in retinal blood flow by combining the Doppler OCT
technique with fundus camera-based measurement of retinal
vessel diameters. The response to systemic hyperoxia and visual
stimulation with flicker light was studied with this system. The

technique has considerable potential in characterizing vascular
abnormalities in animal models of retinal disease including
diabetes.
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