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Abstract. The scattering properties of biological tissue are highly dependent on the structure size, refractive
index, and wavelength of the incident light. Furthermore, these scattering characteristics are strongly influenced
by movements of the scattering objects. A method is developed to determine the angular- and spectral-resolved
scattering properties that enabled the characterization of biological nano- and microscaled cell structures.
Nanosecond pulses from a spectrally filtered supercontinuum light source are captured and time-resolved to
depress background noise and minimize disruptive effects of the biological cells. The scattering characteristics
of a monolayer of mouse fibroblast L929 cells are measured at defined wavelengths in a standard cell culture
plate. Because of the size and distribution of the scattering structures, a Fourier transform-based Mie scattering
scheme is used to analyze the data. The system is tested to detect structural changes of mouse fibroblast L929
cells before and after poisoning with Triton X100. The final result is the development of a contamination-free

method to study pathological changes in cell cultures, necrosis, or other cell-damaging effects. © The Authors.
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1 Introduction

Optical properties of living tissue are important for many diag-
nostic methods in the field of biomedical optics and
biophotonics! and light scattering often limits the ability to
analyze cellular structures.>* Scattering in biological tissue
occurs mainly in the forward direction with the resulting
angle-dependent intensity distribution being determined by
the structure size, the refractive index, and the geometry of
the structures.’ The random spatial distribution of the cell struc-
tures and their size distribution will also determine the scattering
characteristics. All constraints must, therefore, be considered for
the propagation of light in three-dimensional (3-D) biological
structures, which justifies the complexity of the corresponding
models.®

The determination of structural changes in 3-D biological tis-
sues is made possible by different imaging techniques.'*’
Measurements of elastic scattering of light with single cells
allow a characterization of cellular structural changes.®® In
many abnormal cell changes, the evaluation of structural
changes in individual cells is not sufficient and a large number
of cells must be examined to verify the results.'” Angular-depen-
dent light scattering analyses in a suspension of cells with a con-
centration between 1 X 10° and 2 x 103 cells/mL were realized
to analyze phases of the cancer cell cycle.!! For appropriate
measurements, the cells were prepared accordingly and special
cuvettes were used.'>!> The use of optical radiation as a meas-
urement tool could alter or harm the cell culture, which limits
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the maximal usable intensity and measuring time.'"* We have
developed a nondisruptive fast method of angle-resolved scat-
tering measurement in cell culture plates, which enables the
characterization of pathological cell changes during cultivation
without influencing their growth. The pseudorandom scattering
characteristics were attributed to particular cellular structures
and used as a method to determine the state of induced necrosis
of the cells.

2 Experimental Arrangement and Methods

2.1 Light-Scattering Measurements

To investigate the spectral- and angle-resolved scattering char-
acteristics of biological nano- and microscaled cell structures,
the scattered portion of a pulsed supercontinuum (SC) light
source was recorded after the sample in a time-resolved manner
at defined angles. An optical setup to detect these signals was
developed as shown in Fig. 1.5 A spectrally filtered and colli-
mated SC light source, developed and manufactured in co-
operation with fiberware GmbH, was used.'® The SC light
source emits 1.1-ns pulses, a repetition rate of 8 kHz, and
was filtered to a spectral bandwidth between 450 and 650 nm.

The bandpass filters with a spectral transmission width of
10 nm (full width at half maximum) were integrated in a dig-
itally controllable filter wheel to automate the measurement
process. A polarizer ensured a polarization perpendicular to
the detection plane. To capture the time-resolved signal inde-
pendently of the signal strength, an optical trigger was used,
which enables the averaging of 200 individual signals at
every angular position. Each angular position was detected
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Fig. 1 Setup used to measure angular-dependent light scattering.
SC, supercontinuum light source; L1, collimation lens; BS, nonpola-
rizing beam splitter; D1, reference detector; F, bandpass filter; PO,
polarizer; CCP, cell culture plate; SH, specimen holder; P, pinhole;
L2, collecting lens; D2, avalanche detector; and DU, detector unit.

automatically in <1 s and the complete measuring range with a
1 deg angular resolution for each wavelength was detected in
<2.5 min. With the automated filter change, the entire multi-
spectral signal can be detected in <12 min. A standard cell cul-
ture plate was placed on the sample holder and 10 of the 24 wells
were examined. Through the application of index-matching
immersion gel between the cell culture plate and the specimen
holder, the adapted sample holder can allow a measurement of
the scattered components of the incident light in the angular
range of 80 deg without angle-dependent Fresnel reflection
losses. The angular resolution is +1.4 deg, which is due to
the beam diameter on the sample and aberrations in the collimat-
ing lens. By varying the position of detector unit, it is possible to
capture the angular-dependent scattered light at a defined wave-
length. The movement of the detector unit was performed
automatically by a motorized rotation stage. To capture the
time-resolved scattered portion of the pulsed SC-light source,
an avalanche detector with a bandwidth of 50 MHz was used.

The amplitude of the SC pulse is of importance for the meas-
urement method as it is temporally and spectrally resolved over
the angular measurement. To detect the temporal amplitude of
the pulse, the signals were numerically fitted with a Gaussian.
Due to the bandwidth of the avalanche detector, a temporal
broadening of the pulse occurs. The pulse-to-pulse stability
of the SC light source was recorded at a wavelength of
500 nm and is normally distributed. This reference signal
was also fitted with a Gaussian-shaped curve.

2.2 Cell Culture

The L1929 mice fibroblast cells were cultivated in a standard 24
well cell culture plate using a Dulbecco’s modified eagle
medium/nutrient mixture Ham’s F-12, which contained 10%
fetal calf serum (FCS) and 1% L-glutamine. The cells were
seeded in culture wells 24 h before the measurement. The
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culture medium was incubated under a temperature of 37°C.
The humidity was saturated and the CO, concentration was
5% in the incubator. The cell culture plates were removed
from the incubator immediately prior to measurement, and
the measurement time was limited to 30 min. In the case
where induced necrosis was investigated, Triton X100 was
added."”

3 Results and Discussion

To qualify the measuring setup with angular resolution (Fig. 1),
we first used polystyrene beads in a water solution as a stand-
ardized sample to examine the scattering properties of the sys-
tem. Under these conditions, Mie theory can be applied
and scattering distributions are calculated with the software
MiePlot v4.6.12 [see Fig. 2(a)].'® The size uniformity of the
polystyrene beads with a diameter of 1.6 yum was assumed to
be +£3% with wavelength-dependent refractive index defined for
the standardized polystyrene beads in a liquid solution.!*° The
polystyrene bead solution was loaded into a standard 24-well
cell culture plate to measure the angle-resolved scattering char-
acteristics. To analyze the wavelength-dependent scattering
characteristics, the position of the second minima of the scat-
tered fringes at different wavelengths was recorded and com-
pared with the data calculated by Mie theory, Fig. 2(b). In
comparison with monochromatic setups for angle-resolved scat-
tering measurement,”!!? the presented system enables the
elimination of systematic errors based on a multispectral analy-
sis of the scattering characteristic.
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Fig. 2 (a) Angularly resolved signal of the polystyrene beads at a
wavelength of 500 nm in a water solution with a model calculated
according to Mie theory. The inset shows a microscope image of
the polystyrene beads with a diameter of 1.6 um. (b) Wavelength-de-
pendent angular shift of the second minimum of the scattering fringes.
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Fig. 3 Mouse fibroblast L929 cells before (a) and after necrosis (b) by
adding Triton X100."

To demonstrate the possibility to analyze the change of cell
components after necrosis based on wavelength-dependent scat-
tering analyses, 929 mice fibroblast cells were killed by adding
Triton X100. Through the addition of Triton X100, the cell
membrane is ruptured and necrosis occurs. The cells are exam-
ined by light microscopes before and after necrosis, as shown in
Figs. 3(a) and 3(b), respectively. The size of the components of
the cell, as well as the structures remaining after necrosis, was
measured and these parameters were used as inputs for the
calculations.

The cells consist of components that are fixed on the bottom
of the cell culture plate as well as other movable components
within the cell and nucleus. The entire population of cells
(33.8 mm x 22.3 mm + 30%) is fixed on the bottom of the
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Fig. 4 (a) Calculated angularly resolved signal of the mouse fibroblast
L929 cells before necrosis according to Mie theory at a wavelength
500 nm and (b) FFT for the calculated signals of the individual cell
components.
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cell culture plate, and, in the measurement area with a 5-mm
diameter, 3558 &£ 178 cells are counted. To calculate the scatter-
ing properties, the aforementioned diffraction simulations were
applied. Mitochondria (n = 1.42, A = 500 nm) in the cell liquor
(n = 1.35, A = 500 nm) with a measured size of 1.28 ym + 3%
are randomly and uniformly distributed due to their abundance
and movable arrangement.?! The nuclear components in the core
of the cell have a size of 3.8 ym with 20% variation. For all cell
components, Mie theory was applied and the calculated angle-
resolved scattering characteristics at 500 nm for the individual
cell components are shown in Fig. 4(a). Many different features
of the cell, such as statistical variation in size and shape [clearly
evident in Fig. 3(a)] and absorption, as well as correlations
between the individual component’s scattering distributions,?>*
can cause variations in the final measurement. Therefore, the
relative concentration of each cell component is more relevant
for determining cell viability. A spectral analysis using the
fast Fourier transform (FFT) of the angle-resolved curves,*
Fig. 4(b), decouples any phase correlations between the individ-
ual cell components. The cell component’s relative amplitudes,
as well as their frequency shifts before and after necrosis, are
a good indicator of viability.

The scattering signals of 10 different wells of a cell culture
plate are characterized before and after necrosis. The back-
ground of the cell culture plate, culture medium, immersions
liquid, and other optical components is captured and subtracted
from the signal. The comparison of the angle-resolved scattering
pattern of the cells before and after necrosis is shown in
Fig. 5(a), which shows a strong shift in the structure of the
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Fig.5 (a) Angularly resolved signal of the mouse fibroblast L929 cells
before and after necrosis and (b) frequency components of the angu-
lar-resolved measurement of the scattered light before and after
necrosis.
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Fig. 6 Wavelength-dependent shift of the nucleus frequency peak
before necrosis. The black dashed line in each plot is the theoretical
curve calculated by Mie theory.

scattering intensity. The Fourier amplitude of the data in
Fig. 5(a) is shown in Fig. 5(b). Due to the large size, statistical
variation, and weak index contrast of the cell membrane struc-
tures, a marker is drawn where the cell membrane scattering fre-
quency should show up due to Mie scattering but is strongly
disbursed and not visible.

By destroying the cell envelope, the mitochondria are
removed and that portion of scattered light disappears from
the measured signal. Based on their approximate location in
the frequency domain [Fig. 4(b)] as calculated by Mie theory,
as well as their behavior during necrosis, peaks were labeled
with their known cell components. The signal of the cells
after necrosis is numerically approximated by taking scattering
calculations of the shriveled nuclei into account [Fig. 3(b)].

Further verification that the assigned labels for the cell com-
ponents were correct was obtained through the multispectral
analysis of the selectable-wavelength SC light source. As Mie
theory is known to not provide accurate results in many cases
involving complicated structures such as cells,” this second
verification step was necessary to ensure the feature in the fre-
quency domain truly behaved as expected. While the peaks of
the cell components in the frequency domain shift as expected
with wavelength as seen in Fig. 6, superficial frequency peaks
due to noise, correlation, or redistribution of intensity among the
peaks do not.

4 Conclusion

Nondisruptive label-free detection of cell viability in a large cul-
ture of 1.929 fibroblast cells was demonstrated using a multi-
spectral angular scattering measurement system. The cells
themselves present technical obstacles in scattering measure-
ments to overcome, based on the inherent randomness of cell
size and structure, and the quasicorrelated distribution, as well
as optical absorption, of components within the cell. Due to
these variations, Mie theory poorly predicted the angular scat-
tering intensity patterns from these structures; however, the
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spectral frequencies based on the Fourier transform of the angu-
lar scattering intensity displayed critical information provided
by Mie theory on the relative population of cell components
before and after necrosis. Peaks were visible in the Fourier
domain that correlated directly to the critical components of
the cell, which change under necrosis. This method of analysis,
coupled with the multispectral SC, allowed for the labeling of
cell components before and after necrosis, and also provided an
indicator of their relative population density. These measure-
ments will be further implemented in a bioreactor environment
as a technique to quickly and nondisruptively observe cell cul-
ture reactions to varying stimuli.
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