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Abstract

Significance: Code verification is an unavoidable step prior to using a Monte Carlo (MC) code.
Indeed, in biomedical optics, a widespread verification procedure for MC codes is still missing.
Analytical benchmarks that can be easily used for the verification of different MC routines offer
an important resource.

Aim: We aim to provide a two-step verification procedure for MC codes enabling the two main
tasks of an MC simulator: (1) the generation of photons’ trajectories and (2) the intersections
of trajectories with boundaries separating the regions with different optical properties. The pro-
posed method is purely based on elementary analytical benchmarks, therefore, the correctness
of an MC code can be assessed with a one-sample t-test.

Approach: The two-step verification is based on the following two analytical benchmarks:
(1) the exact analytical formulas for the statistical moments of the spatial coordinates where
the scattering events occur in an infinite medium and (2) the exact invariant solutions of the
radiative transfer equation for radiance, fluence rate, and mean path length in media subjected
to a Lambertian illumination.

Results: We carried out a wide set of comparisons between MC results and the two analytical
benchmarks for a wide range of optical properties (from non-scattering to highly scattering
media, with different types of scattering functions) in an infinite non-absorbing medium (step
1) and in a non-absorbing slab (step 2). The deviations between MC results and exact analytical
values are usually within two standard errors (i.e., t-tests not rejected at a 5% level of signifi-
cance). The comparisons show that the accuracy of the verification increases with the number of
simulated trajectories so that, in principle, an arbitrary accuracy can be obtained.

Conclusions: Given the simplicity of the verification method proposed, we envision that it can
be widely used in the field of biomedical optics.
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1 Introduction

The verification of a Monte Carlo (MC) code is an important aspect of the whole process of
confirmation that assures the scientific community of the reliability of its results.1 In the process
of confirmation, we can distinguish between a verification phase and a validation phase. The
verification of an MC code is typically done by comparisons between its results and those
obtained either with analytical benchmarks,1–3 or more often with previously verified MC codes.
In contrast, the validation of an MC code is done by comparisons between its results and those
obtained with experiments.4,5 In this work, we are concerned only with the verification of an
MC code. In the last decades, the modeling of heterogeneous tissue structures in MC codes for
photon transport has required the development of algorithms with increasing complexity.6–17

Therefore, the need for a thorough verification procedure has become more and more urgent.
As a matter of fact, most of the MC codes developed in biomedical optics have been verified

partially or exclusively by means of comparisons with previously verified codes.6–18 In the cross-
verification procedures between MC results,9–16,18 the Monte Carlo modeling of light transport in
multi-layered tissues (MCML) open-source code developed in the early nineties19 has been
largely used as the standard reference. Due to this fact, the results of this code developed for
a multi-layered medium can be considered as a numerical benchmark for photon migration
through layered media. This special role played by MCML in biomedical applications is not
observed for other MC codes.

One drawback of using verified MC codes to generate reference data is the limited accuracy
that is achievable with a computer simulation. However, this drawback has not actually restricted
the use of the MC method. In recent years, the facilitated access to open-source platforms of MC
codes has made MC results easily available to a wider audience, and the practice of using verified
MC codes has become the widest verification method used in biomedical applications.

It is also important to stress that in biomedical optics there is limited use of exact solutions of
the radiative transfer equation (RTE) for the verification of MC codes. Indeed, only a few exam-
ples can be found for this kind of verification.12,16,19 This fact is related to the intrinsic complex-
ity of both older and newly available solutions of the RTE,20–23 which are not in closed-form and
require some numerical evaluation. The verification of MCML, and other MC codes, has been
largely based on the RTE solutions tabulated by van de Hulst,24,25 related to a scattering slab, and
on the RTE solutions for a semi-infinite medium tabulated by Giovanelli.26 The extensive use
of these historical results from Giovanelli and Van de Hulst, even though affected by a limited
accuracy, provides another clear indicator of the difficulties to use other benchmarks based on
more complex newly available solutions of the RTE.20–23

The intent of this work is to propose a verification method purely based on the exact analytical
solutions of the RTE. The selected benchmarks have the common characteristic to be extremely
simple in terms of implementation so that the computational burden found with newly available
RTE solutions20–23 is avoided. Therefore, their use is also open to the non-expert users of complex
computational methods since their implementation is straightforward. The method is framed in
two steps which focus on two different aspects of photon migration in scattering media: (a) propa-
gation through homogeneous domains, where the statistical rules valid in an infinite medium for
the extraction of photons’ trajectories are used2,27,28 and (b) propagation through regions with
different optical properties, where the effects of boundaries must be accounted for.19,27,28

Accordingly to this vision any verification method of an MC code can be in principle divided
into (a) verification in an infinite medium where the basic routines/algorithms to extract the pho-
tons’ trajectories can be tested by using very intrinsic analytical benchmarks of photons transport
and (b) verification in finite media, or in media with a least one finite dimension, where the effects
of boundaries can be tested by means of specific benchmarks.

Thus, as the first step, we propose to verify an MC code by using statistical formulas for the
first and the second moments of the spatial coordinates where the different scattering orders
occur in an infinite non-absorbing medium.2 For the second step of the verification method,
we propose to use the invariant solutions for the radiance, I, the fluence rate, Φ, and mean total
path length, hLi, in bounded non-absorbing media subjected to Lambertian illumination.3,29–31

With this two-step procedure, all the main quantities involved in an MC simulation can be veri-
fied with a high level of accuracy. Finally, it can be noted that this procedure is suitable to be used
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during the development of an MC code, i.e., from its very beginning till the finalization of the
code. This aspect is not secondary in our proposed method and has an important didactic value:
instead of verifying a code at the end of its implementation, a verification “in progress” has the
advantage to check the different algorithms and routines during their construction with the
advantage that the effects of multiple bugs can be better detected.

It is worth noting that the proposed method largely extends the verification methods previ-
ously published in Refs. 2 and 3. The benchmarks used in Ref. 2 for isotropic scattering can now
be applied for any scattering order. Compared to Ref. 3, the benchmarks used include funda-
mental radiometric quantities such as radiance and fluence rate. This latter extension is of fun-
damental interest because the radiance is at the origin of all the radiometric quantities used in
radiative transfer, therefore a verification based on radiance is quite relevant. Moreover, the flu-
ence rate represents a fundamental quantity in the latest generation of MC codes describing
propagation in complex geometries,6–14,16,17 therefore, a verification method based on fluence
rate is of the utmost importance.

In Sec. 2, the analytical benchmarks used in the proposed verification method are described.
In the same section, the proposed verification method is also described. In Sec. 3, the results
obtained with the two-step verification method are presented. In Sec. 4, the results described in
Sec. 3 are briefly discussed together with the future perspectives for the application of this
method.

2 Theory and Methods

This section describes the two kinds of benchmarks used in the verification procedure proposed
in this work together with a brief description of the method.

2.1 Analytical Benchmarks for Light Propagation through an Infinite Medium:
Statistical Moments of the Coordinates of the Scattering Events

In this section, the relationships existing between the statistical moments of the coordinates
where scattering events occur and the optical properties are presented for the case of an infinite
non-absorbing medium. It is at first considered the general case of rotationally symmetric scat-
tering phase functions, i.e., scattering functions which can be represented as pðŝ · ŝ 0Þ, with ŝ
direction of the incident radiation and ŝ 0 direction of the scattered radiation (Sec. 2.1.1). Then,
it is considered the special case of isotropic scattering (Appendix). The benchmarks presented
in this section are a set of analytical solutions of immediate implementation. The proof of their
validity can be found in the related cited literature (see below) and in the Appendix included in
this work.

2.1.1 Rotationally symmetric scattering phase functions

Let’s consider an infinite homogeneous non-absorbing medium, where at the origin of a
Cartesian reference system we have a pencil light source in the z direction. The optical properties
of the medium are described by the scattering coefficient, μs, and the scattering function, pðθÞ,
with θ the scattering angle.27,28 Although we consider a non-absorbing medium, it is important to
note that the inclusion of absorption is straightforward by means of the microscopic Beer–
Lambert law (mBLL).28 In what follows the average values of the first and second moments
of the coordinates where the different scattering orders occur (up to the fourth-order) are
reported.2 The different scattering orders will be denoted with a subscript giving the number
of the scattering order. Thus, the mean values of x1, y1, and z1 (first moments) where the first
scattering event occurs are given by2

EQ-TARGET;temp:intralink-;e001;116;126hx1i ¼ hy1i ¼ 0; (1)

EQ-TARGET;temp:intralink-;e002;116;83hz1i ¼
1

μs
; (2)
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and the relative mean square values hx21i, hy21i, and hz21i (second moments) are given by2

EQ-TARGET;temp:intralink-;e003;116;723hx21i ¼ hy21i ¼ 0; (3)

EQ-TARGET;temp:intralink-;e004;116;679hz21i ¼
2

μ2s
: (4)

From the above relations, the values of the mean square distance from the z axis, hρ21i, and the
mean square distance from the source, hd21i, are obtained as2

EQ-TARGET;temp:intralink-;e005;116;630hρ21i ¼ hx21 þ y21i ¼ hx21i þ hy21i ¼ 0; (5)

EQ-TARGET;temp:intralink-;e006;116;586hd21i ¼ hx21 þ y21 þ z21i ¼ hx21i þ hy21i þ hz21i ¼
2

μ2s
: (6)

For the second scattering order, we have2

EQ-TARGET;temp:intralink-;e007;116;551hx2i ¼ hy2i ¼ 0; (7)

EQ-TARGET;temp:intralink-;e008;116;508hz2i ¼
1þ g
μs

; (8)

EQ-TARGET;temp:intralink-;e009;116;473hx22i ¼ hy22i ¼
1 − g2
μ2s

; (9)

EQ-TARGET;temp:intralink-;e010;116;439hz22i ¼
2ð1þ gþ g2Þ

μ2s
; (10)

where g ¼ hcos θi and g2 ¼ hcos2 θi are the first and second moments of the cosine of the scat-
tering angle, respectively. The parameter g is usually denoted asymmetry factor of the phase
scattering function.

From Eqs. (9) and (10) we have2

EQ-TARGET;temp:intralink-;e011;116;367hρ22i ¼ hx22 þ y22i ¼ hx22i þ hy22i ¼
2ð1 − g2Þ

μ2s
; (11)

EQ-TARGET;temp:intralink-;e012;116;310hd22i ¼ hx22 þ y22 þ z22i ¼ hx22i þ hy22i þ hz22i ¼
2ð2þ gÞ

μ2s
: (12)

The mean coordinates of the point at which the third-order of scattering occurs are2

EQ-TARGET;temp:intralink-;e013;116;274hx3i ¼ hy3i ¼ 0; (13)

EQ-TARGET;temp:intralink-;e014;116;231hz3i ¼
1þ gþ g2

μs
; (14)

and also

EQ-TARGET;temp:intralink-;e015;116;195hx23i ¼ hy23i ¼
3
2
þ g − gg2 − 3

2
g22

μ2s
; (15)

EQ-TARGET;temp:intralink-;e016;116;137hz23i ¼
3þ 2gþ 2g2 þ 2gg2 þ 3g22

μ2s
: (16)

Similarly to the previous scattering orders, we also have

EQ-TARGET;temp:intralink-;e017;116;101hρ23i ¼ hx23 þ y23i ¼ hx23i þ hy23i ¼
3þ 2g − 2gg2 − 3g22

μ2s
; (17)
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EQ-TARGET;temp:intralink-;e018;116;723hd23i ¼ hx23 þ y23 þ z23i ¼ hx23i þ hy23i þ hz23i ¼
2ð3þ 2gþ g2Þ

μ2s
: (18)

For the fourth-order, we have2

EQ-TARGET;temp:intralink-;e019;116;686hx4i ¼ hy4i ¼ 0; (19)

EQ-TARGET;temp:intralink-;e020;116;643hz4i ¼
1þ gþ g2 þ g3

μs
; (20)

EQ-TARGET;temp:intralink-;e021;116;608hx24i ¼ hy24i ¼
9
4
þ 3

2
g − 3

2
gg22 þ g2 − g2g2 − 3

4
g2 þ 3

4
g22 − 9

4
g32

μ2s
; (21)

EQ-TARGET;temp:intralink-;e022;116;571hz24i ¼
7
2
þ 3gð1þ g22Þ þ 2g2ð1þ g2Þ þ 2g3 þ 3

2
g2 − 3

2
g22 þ 9

2
g32

μ2s
: (22)

EQ-TARGET;temp:intralink-;e023;116;534hρ24i ¼ hx24 þ y24i ¼ hx24i þ hy24i ¼
9
2
þ 3g − 3gg22 þ 2g2 − 2g2g2 þ − 3

2
g2 þ 3

2
g22 − 9

2
g32

μ2s
; (23)

EQ-TARGET;temp:intralink-;e024;116;497hd24i ¼ hx24 þ y24 þ z24i ¼ hx24i þ hy24i þ hz24i ¼
2ð4þ 3gþ 2g2 þ g3Þ

μ2s
: (24)

The calculations can be in principle iterated for the higher scattering orders. Given the cylin-
drical symmetry, with respect to the z axis, we have that hxki and hyki are zero for any k. While
for hzki, the following relation is valid, which is given by2

EQ-TARGET;temp:intralink-;e025;116;436hzki ¼
1 − gk

μsð1 − gÞ : (25)

It is worth noting that the above equation for k → ∞ returns the classical transport mean free
path, 1

μsð1−gÞ.
28 For the higher scattering orders it is also possible to extrapolate the following

recurring relation for hd2ki, which is given by2

EQ-TARGET;temp:intralink-;e026;116;350hd2ki ¼ hx2k þ y2k þ z2ki ¼ 2
k − ðkþ 1Þgþ gkþ1

μ2sð1 − gÞ2 : (26)

A full proof of Eq. (26), derived from the RTE, was obtained by Liemert et al.32 for arbitrary
rotationally symmetric scattering phase functions (e.g., the Henyey–Greenstein (HG) phase
function).28 In Ref. 32, this expression is also generalized for an absorbing medium. The impor-
tance of this benchmark is that it can be used for any scattering order and is usually employed in
biomedical optics for most of the scattering functions.

Statistical relationships can also be obtained for the optical path lengths of the propagated
photons. The statistical moment of orderm of the path length traveled at the k’th scattering event
is given by2

EQ-TARGET;temp:intralink-;e027;116;209hlmk i ¼
kðkþ 1Þ · · · ðkþm − 1Þ

μms
: (27)

2.1.2 Isotropic scattering phase functions

For the case of isotropic scattering, it is possible to extrapolate the following recurring relations
for the second moment for any scattering order k > 0 as given by

EQ-TARGET;temp:intralink-;e028;116;111hx2ki ¼ hy2ki ¼
2

3μ2s
ðk − 1Þ; (28)
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EQ-TARGET;temp:intralink-;e029;116;723hz2ki ¼
2

3μ2s
ðkþ 2Þ; (29)

EQ-TARGET;temp:intralink-;e030;116;689hρ2ki ¼ hx2k þ y2ki ¼ hx2ki þ hy2ki ¼
4

3μ2s
ðk − 1Þ; (30)

EQ-TARGET;temp:intralink-;e031;116;654hd2ki ¼ hx2k þ y2k þ z2ki ¼ hx2ki þ hy2ki þ hz2ki ¼
2k
μ2s

: (31)

The proof of the validity of the above equations is treated in the Appendix where exact analytical
equations for the moments of the coordinates where scattering events occur are obtained. We
notice that, compared to the previous benchmarks (Sec. 2.1.1), the calculated moments for iso-
tropic scattering do not depend on g and g2.

The presented benchmarks provide an overview of the “cloud” of photons migrating in an
infinite medium. The first moments yield the coordinates of its barycenter, while the second
central moments represent its width along the three axes. They are strictly related to the scatter-
ing function and the statistical law for scattering interactions. The features of the scattering
function that affect the statistical moments are: g ¼ hcos θi and g2 ¼ hcos2 θi. Thus, these
benchmarks are suitable to verify if an MC code correctly extracts the photons’ trajectories and
consequently the scattering function is correctly implemented inside the code.

2.2 Analytical Benchmarks for Boundary Effects: Invariant Solutions
for Radiance, Fluence Rate, and Total Mean Path Length

Photon migration in a finite medium is also characterized by boundary effects, i.e., reflection,
refraction, and intersection. Besides the boundary with the outer medium, internal boundaries are
also used to enclose regions with different optical properties. The correct evaluation of boundary
effects is another important task of an MC code. To verify the reliability of an MC code to
simulate boundary effects, we propose to use a set of invariant exact solutions of the RTE for
the radiance, fluence rate, and for the partial and total path lengths that are obtained when a non-
absorbingmedium is subjected to a Lambertian illumination.29,30,33,34 These solutions depend on
the distribution of the refractive index inside the medium relative to the refractive index of the
outer medium.

Let’s consider a non-absorbing inhomogeneous medium of volume V (with at least one finite
dimension) without internal sources, delimited by a smooth convex surface Σ. The medium is
composed of a number N of discrete sub-volumes Vj of refractive index nj and with no restric-
tions on the scattering properties inside each Vj. The surfaces enclosing each sub-volume are
assumed to be smooth so that Snell’s and Fresnel’s law can be applied. The refractive index of
the external medium is denoted with ne and the surface Σ is illuminated by a continuous wave
Lambertian radiation of intensity I0ðWm−2 sr−1Þ, i.e., the source term is thus can be expressed in
terms of the distribution of radiance on the external surface Σ, which is given by

EQ-TARGET;temp:intralink-;e032;116;243IeSourceð~rΣ; ŝeÞ ¼ I0½Wm−2 sr−1� ∀ ~rΣ ∈ Σ and ∀ ŝe inwardly directed to Σ: (32)

In this case, the solution for the radiance inside Vj is
29

EQ-TARGET;temp:intralink-;e033;116;198Ijð~r; ŝÞ ¼
�
nj
ne

�
2

I0 ½Wm−2 sr−1� ∀ ŝ and ∀ ~r ∈ Vj; (33)

where Ijð~r; ŝÞ is a function of the refractive indices nj, internal to Vj, and ne, external to V;
however, we notice that this solution does not depend on the refractive index of the remaining
sub-volumes. Also, in Eq. (33) ŝ denotes the direction vector, while ~r denotes the position vector
internal to the medium. Consequently, the solution for the fluence inside Vj is expressed as29

EQ-TARGET;temp:intralink-;e034;116;102Φjð~rÞ ¼
Z
4π
Ijð~r; ŝÞdŝ ¼ 4π

�
nj
ne

�
2

I0; ½Wm−2�; ∀ ~r ∈ Vj: (34)
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Finally, the average internal path length in each sub-volume Vj results in
29

EQ-TARGET;temp:intralink-;e035;116;723hLji ¼ 4

�
nj
ne

�
2 Vj

Σ
: (35)

The average total path length hLi inside the total volume V can also be evaluated by simply
summing up all the contributions of the average internal path lengths hLji of Eq. (35), i.e.,

EQ-TARGET;temp:intralink-;e036;116;653hLi ¼
XN
j¼1

hLji ¼ 4
XN
j¼1

�
nj
ne

�
2 Vj

Σ
: (36)

From Eqs. (33) and (34), we clearly see that the solutions for the internal radiance and the fluence
rate are invariant both with respect to the geometry of the medium (provided that the external
surface is convex and smooth) and with respect to the distribution of the scattering properties
(scattering coefficient, scattering function, and homogeneity). Similarly, the expressions for the
average internal path lengths hLji and the total path length hLi are invariant with respect to
the scattering properties of the medium, however, they depend (as it is expected) on the volumes
of the sub-regions and the whole external surface Σ. One exception is the case of μsjð~rÞ ¼ 0

whenever the geometry (e.g., sphere or slab) of the medium allows for a regime of trapped
trajectories.29 These properties imply that these benchmarks can be used for any scattering coef-
ficient of the medium except, with μsjð~rÞ ¼ 0, for all those geometries where trapped trajectories
can be established.

In general, for a non-scattering medium [μsjð~rÞ ¼ 0] with nj ≤ ne, the above solutions are
still valid. While, with μsjð~rÞ ¼ 0, for geometries like a sphere or slab with nj > ne,

29,35 where
photons can be trapped inside the volume, the same RTE solutions found for scattering media
cannot be used. For example, the RTE solution for a layered non-scattering slab (which will be
used in the results section) should account for the regime of trapped photons. Accordingly, the
RTE solution for the internal radiance inside a layered non-scattering slab is29

EQ-TARGET;temp:intralink-;e037;116;391

Ijð~r; ŝÞ ¼
�
nj
ne

�
2

I0 ∀ ~r ∈ Vj ∀ ŝjjŝ · q̂j ≥ cos θjMax

Ijð~r; ŝÞ ¼ 0 ∀ ~r ∈ Vj ∀ ŝjjŝ · q̂j < cos θjMax; (37)

where I0 is the radiance on the external surface Σ, q̂ is the unit vector perpendicular to the slab
inwardly directed, θjMax is the maximum entrance angle in the medium for having radiation in
the j’th layer. Consequently, the solution for the fluence rate in a layered slab is

EQ-TARGET;temp:intralink-;e038;116;293Φjð~rÞ ¼ 4π

�
nj
ne

�
2

I0½1 − cosðθjMaxÞ�; ½Wm−2� ∀ ~r ∈ Vj: (38)

Finally, the average internal path length hLji spent in the j’th layer of the slab is

EQ-TARGET;temp:intralink-;e039;116;235hLji ¼ 2sj

�
nj
ne

�
2

½1 − cosðθjMaxÞ�; (39)

where sj is the thickness of the j’th layer of the slab. For some guidelines to calculate the angle
θjMax, we refer to the work of Martelli et al.29 It may be worth noting that for nj > ne in the
above solutions we have a discontinuity of the radiance between the case μs ¼ 0 [Eq. (37)]
and the case μs ≠ 0 [Eq. (33)].29 When nj > ne, a discontinuity is also observed for the fluence
rate, Φj and the partial path length hLji as can be similarly noted by the above equations. 29,35

Moreover, when nj > ne and μs ¼ 0, from Eq. (37) the discontinuity of the radiance can be
observed for the angle θjMax. At such value of the angle the radiance Ij switches from the value
ðnjneÞ2I0 to zero.

The presented benchmarks provide an overview of invariant solutions of the RTE in non-
absorbing media that are sensitive to the effects of boundary conditions between the different
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regions of the medium and also between the medium and the external region. It must be noted
that the independence of the presented solutions from the scattering properties of the medium
implies that they cannot be used to test the correctness of the phase function implemented in the
code. However, this is done with the previous benchmark of Sec. 2.1. Combined together, the
benchmarks of Secs. 2.1 and 2.2 cover the main characteristics of photon migration according
to the RTE.

2.3 Proposed Method

The verification method here proposed is divided into two steps and exploits the following strat-
egy: (1) all the routines of the code involved in the extraction of the trajectories, based also on the
scattering function are verified by a direct comparison of MC results in an infinite medium with
the benchmarks as in Sec. 2.1 and (2) the routines of the MC code related to the interactions
of photons’ trajectories with boundaries are verified by a direct comparison of the MC results in
a slab geometry with the invariant solutions for radiance, fluence rate, and mean path length as
in Sec. 2.2.

Concisely, the first step is devised to test the phase function implemented in the MC code, the
second one to test the intersection of photon’s trajectories with boundaries, including the correct
implementation of the reflection and refraction laws. The second step includes the boundary with
the external medium and those between regions of the medium with different optical properties.
We notice that the correct calculation of the intersections with boundaries is at the core of partial
path length estimation, which is one fundamental task of an MC code. In fact, the absence of
boundaries in the first step is ideal for testing the phase function. In contrast, the invariant sol-
utions of RTE used in the second step (which do not depend on the features of the phase func-
tion) are ideal for testing the intersection with boundaries.

We believe that the two-step verification increases the sensitivity to detect errors in an
MC code.

3 Results

In this section, the results obtained using the proposed method in the two steps of the verification
are presented. The results obtained in the first step of the verification are described in Sec. 3.1.
While the results obtained in the second step of the verification are described in Sec. 3.2.

3.1 First step of the Verification (Sec. 2.1)

In this section, the moments of the coordinates of the scattering points calculated with MC sim-
ulations have been compared with the analytical benchmarks of Sec. 2.1. All the comparisons
are carried out in an infinite non-absorbing medium with a unitary scattering coefficient μs ¼
1 mm−1 where a pencil beam source is injected at the origin of a Cartesian reference system
along the z direction. Three scattering functions have been selected: the HG model with g ¼ 0

and 0.9,28 and a Rayleigh scattering function (g ¼ 0).28 This choice is motivated on this ground:
for these scattering functions the moments g and g2 are known exactly without resorting to
numerical evaluations. This is not true for phase scattering functions derived from Mie theory.28

The MC code here subjected to the verification procedure is a program used for simulating
light propagation in tissue optics. The core of the program, developed during the period 1980
to 1999,28,36–39 generates a large number of photons’ trajectories for different scattering coef-
ficients and refractive indices. In Tables 1–3 the relative errors (ratio between standard error and
average value) of the MC results obtained for the moments of Sec. 2.1 for the first four scattering
orders (k ∈ f1; : : : ; 4g) are shown for three values of the number of simulated trajectories
N ∈ f106; 108; 1010g. We notice that the relative error decreases by one order of magnitude
as the value of N increases by two orders of magnitude. This behavior expresses exactly the
expected distributions for the calculated quantities and highlights the fact that the precision
of the calculation is only limited by the numerical accuracy of the processor and by the number
of simulated trajectories, as is expected from the statistical theory. In these tables, the data for
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hx1i, hy1i, hx21i, hy21i, and hρ21i have not been reported since their values are null and the relative
uncertainty cannot be calculated.

To have clear information on the accuracy of the simulated results, in Tables 4–6 the
deviation of the MC results from the benchmarks of Sec. 2.1 is shown. The deviation is nor-
malized to the standard error of the MC results (this defines the t random variable to be used for
the one-sample t-test). We found that all the MC results (with only one exception) were con-
sistent with the RTE values within two standard errors. The t-tests for all the cases reported in
Tables 4–6 at a 5% level of significance show that the null hypothesis is not rejected. These
results testify to the consistency of the extracted trajectories with the statistical rules of propa-
gation of photon transport. The expected values from the RTE are shown in Table 7. The MC
code is also able to describe the small differences between the moments for pure isotropic scat-
tering (HG, g ¼ 0) and Rayleigh scattering as can be noted in the reported tables.

For higher scattering orders (k > 4), we can still use Eqs. (25)–(31). As an example in
Table 8, we show the deviation of the MC results for the moment hd2ki from Eq. (31) up to the
tenth order for the different scattering functions considered. Except for one case, the deviation
between MC results and reference RTE expected values is within two standard errors. These
results confirm the same level of accuracy obtained in the other presented tables with the bench-
marks used for k ∈ f1; : : : ; 4g. Similar results have also been obtained for the moments hx2ki,
hy2ki, and hz2ki for the case of isotropic scattering [Eqs. (28) and (29)].

3.2 Second Step of the Verification (Sec. 2.2)

In this section, the radiance, the fluence rate, and the total mean path length spent inside a layered
non-absorbing slab subjected to a Lambertian illumination calculated with MC simulations are
compared with the exact analytical solutions of Sec. 2.2. This kind of verification is aimed to test
the MC code regarding the effects of boundaries on photon migration. To this purpose, we have
considered a layered slab geometry. In the considered examples, the boundary effects are tested
both internally to the medium, betwen different layers, and also for the boundary with the exter-
nal medium.

For this second step of the verification method, we have used Eqs. (33) and (37) for the
radiance, Eqs. (34) and (38) for the fluence rate, and Eqs. (35) and (39) for the mean path lengths.
We notice that, to the best of our knowledge, the methodical application of the radiance and the
fluence rate for a verification procedure of MC codes is original. Radiance and fluence are fun-
damental quantities of transport theory and their correct calculation is crucial in many applica-
tions and also for the verification of MC codes.40,41

3.2.1 Comparisons for the radiance

The MC simulations have been carried out assuming a unitary incoming flux. In the solutions
given in Sec. 2.2, this is equivalent to assume in the theory I0 ¼ 1

π Wm−2 sr−1. All the layered
slabs considered in this section are laterally infinitely extended and subjected to a uniform
Lambertian illumination.29 The required uniform isotropic radiance illumination (Lambertian)
of the slab can be carried out by using the intrinsic symmetries of this geometry that allow to
replace the uniform illumination on the external surface by a single point illumination. This is
possible by making use of the reciprocity theorem (or geometry equivalence) that allows to swap
source and detector.42 Moreover, for the slab to have uniform illumination on both sides it is also
needed to switch alternatively the illumination, i.e., the injection inside the slab of subsequent
simulated photons, from one side to the other of the slab. As a first test for the verification of the
radiance we considered a four-layered slab, where each layer was 2.5 mm thick and where we
had two different distributions of the refractive index, defined as “Up” and “Dw.” These two
distributions were characterized by an increasing and decreasing trend across the slab, respec-
tively (Fig. 1). The external refractive index is 1 for the profile Up and 2 for the profile Dw. The
scattering coefficient was fixed to μs ¼ 1 mm−1 in each layer of the slab and the scattering func-
tion was derived from the HG model with g ¼ 0. In Fig. 2, the radiance calculated with the
MC code is compared to the solution of Eq. (33) for two numbers of simulated trajectories,
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i.e., N ¼ 106 and 108. The radiance is shown in each layer. The convergence of the simulated
radiance to the true values of the invariant solution can be clearly noted in each layer and for both
distributions of the refractive index. In an error-free code, the improvement of the accuracy ver-
sus N can be also easily visualized for the radiance, that is isotropic and constant inside any sub-
volume with a constant refractive index (see Sec. 2.2). This is shown in Fig. 2 where the fluc-
tuations of the simulated radiance around the true values decrease for the larger N. In Fig. 2, it
can also be noted the larger oscillations around 90 deg caused by the reduced sampling of pho-
tons around this angle.

We have further tested the behavior of the radiance generated with the MC code by consid-
ering 100-layered slab, where each layer was 0.1 mm thick and where we had two different
discrete distributions of the refractive index shown in Fig. 3 and denoted as Up, with an increas-
ing refractive index from one side to the other, and Dw, with a decreasing refractive index from
one side to the other. Also in this case the external refractive index is 1 for the profile Up and 2
for the profile Dw. For this 100-layered slab we have considered two values of the scattering
coefficient: μs ¼ 0 and 1 mm−1. The scattering function was the HG model with g ¼ 0.

Table 7 Expected values from the RTE theory of the statistical moments of the coordinates of
scattering events for a non-absorbing infinite medium with scattering coefficient μs ¼ 1 mm−1 and
three scattering functions: HG (g ¼ 0), HG (g ¼ 0.9), and Rayleigh.

RTE HG (g ¼ 0) HG (g ¼ 0.9) Rayleigh

k 1 2 3 4 1 2 3 4 1 2 3 4

hxk i (mm) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

hyk i (mm) 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.

hzk i (mm) 1. 1. 1. 1. 1. 1.9 2.71 3.349 1. 1. 1. 1.

hx2
k i (mm2) 0. 0.6̄ 1.3̄ 2. 0. 0.126̄ 0.469933 1.091246 0. 0.6 1.26 1.926

hy2
k i (mm2) 0. 0.6̄ 1.3̄ 2. 0. 0.126̄ 0.469933 1.091246 0. 0.6 1.26 1.926

hz2
k i (mm2) 2. 2.6̄ 3.3̄ 4. 2. 5.546̄ 10.28013 15.91551 2. 2.8 3.48 4.148

hρ2k i (mm2) 0. 1.3̄ 2.6̄ 4. 0. 2.253̄ 0.939866 2.182492 0. 1.2 2.52 3.852

hd2
k i (mm2) 2. 4. 6. 8. 2. 5.8 11.22 18.098 2. 4. 6. 8.

hl k i (mm) 1. 2. 3. 4. 1. 2. 3. 4. 1. 2. 3. 4.

hl2k i (mm2) 2. 6. 12. 20. 2. 6. 12. 20. 2. 6. 12. 20.

Table 8 Deviation of the MC results from the theory normalized to the MC standard error,
hd2

k iMC−hd2
k iRTE

σhd2
k
iMC

, for the statistical moment hd2
k i in a non-absorbing infinite medium with scattering

coefficient μs ¼ 1 mm−1 for three different scattering functions: HG scattering function with
g ¼ 0 and g ¼ 0.9, and Rayleigh scattering function. The number of simulated trajectories is
N ¼ 1010.

hd2
k iMC−hd2

k iRTE
σhd2

k
iMC N ¼ 1010

k 1 2 3 4 5 6 7 8 9 10

HG g ¼ 0 −0.150 −1.306 −0.931 −0.386 −0.785 −0.520 −0.312 −0.351 −0.756 −0.308

HG g ¼ 0.9 1.318 1.635 2.650 1.643 1.161 0.231 0.418 −0.017 0.239 0.379

Rayleigh −0.117 −1.336 −0.687 −1.683 −1.548 −1.058 −1.212 −1.054 −1.057 −0.985

Sassaroli et al.: Two-step verification method for Monte Carlo codes in biomedical optics applications

Journal of Biomedical Optics 083018-16 August 2022 • Vol. 27(8)



0 30 60 90 120 150 180
0.4

0.6

0.8

1.0

1.2

1.4

I(
W

m
–

2
sr

–1
)

I(
W

m
–

2
sr

–1
)

θ (deg)

MC N = 106

MC N = 108

RTE

z = 1.6 mm

z = 4.2 mm

z = 6.6 mm

z = 9.2 mm
Four-layered slab Up

0 30 60 90 120 150 180
0.05

0.10

0.15

0.20

0.25

θ (deg)

MC N = 106

MC N = 108

RTE

z = 1.6 mm

z = 4.2 mm

z = 6.6 mm

z = 9.2 mm

Four-layered slab Dw

(a) (b)

Fig. 2 Radiance inside each layer of a non-absorbing four-layered slab of thickness 10 mm. Inside
the slab the scattering coefficient is μs ¼ 1 mm−1 and the phase scattering function is obtained
from the HG model with g ¼ 0. Two profiles of the refractive index inside the slab have been con-
sidered: Up and Dw, see Fig. 1. The external refractive index is 1 for the profile Up and 2 for the
profile Dw. The solution of Eq. (33) (red curves) is compared with the results of MC simulations
(noisy curves).
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Fig. 1 Profiles of the refractive index Up and Dw inside a four-layered slab of thickness 10 mm
used in the MC simulations are shown in Fig. 2. The external refractive index is 1 for the profile Up
and 2 for the profile Dw.
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Fig. 3 Profile of the refractive index Up and Dw inside 100-layered slab of 10 mm thickness used
in the MC simulations shown in Figs. 4–9. The external refractive index is 1 for the profile Up and
2 for the profile Dw.

Sassaroli et al.: Two-step verification method for Monte Carlo codes in biomedical optics applications

Journal of Biomedical Optics 083018-17 August 2022 • Vol. 27(8)



Figures. 4 and 5 show the comparisons of the radiance calculated with MC simulations and with
Eqs. (33) (μs ≠ 0) and (37) (μs ¼ 0) for the profiles Up and Dw, respectively. The results are
shown for four selected depths z inside the slab, i.e., four selected layers, shown in the inset of
the figures. For both refractive index profiles and scattering values, the MC simulations match
the exact values of the RTE solutions. For the profile Up and μs ¼ 0 mm−1, we have the con-
ditions of guided propagation and Eq. (33), i.e., Ij ¼ 1

π ð
nj
ne
Þ2 Wm−2 sr−1, for the radiance must be

replaced by Eq. (37). In this case, the discontinuity of the radiance can be visualized for two
values of the angle θ, as it is visible in Fig. 4. For incident angles greater than the maximum
entrance angle for a given layer, the radiance drops to zero. This behavior is accurately repro-
duced by the MC results and is observed for all the depths considered. We can thus conclude that
the calculations of radiance are widely verified with the exact solutions given in Sec. 2.2.
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Fig. 4 Radiance inside a non-absorbing 100-layered slab of thickness 10 mm calculated at differ-
ent depths from the external boundary and for both the non-scattering (a) and scattering case (b).
Inside the slab, we considered an HG phase scattering function with g ¼ 0. The profile of refractive
index Up is considered, see Fig. 3. The solutions of Eq. (33) [red lines in (b)] and Eq. (37) [red lines
in (a)] are compared with MC results (symbols).
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Fig. 5 Radiance inside a non-absorbing 100-layered slab of thickness 10 mm calculated at differ-
ent depths from the external boundary and for both the non-scattering (a) and scattering case (b).
Inside the slab, we considered an HG phase scattering function with g ¼ 0. The profile of refractive
index Dw is considered, see Fig. 3. The solutions of Eq. (33) [red lines in (b)] and Eq. (37) [red lines
in (a)] are compared with MC results (symbols).
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3.2.2 Comparisons for the fluence rate

In Figs. 6 and 7, for the same 100-layered slab used in the previous figures, we extended the
verification to the fluence rate inside the slab for several values of the scattering coefficient and
with a HG scattering function with g ¼ 0. The agreement between MC results and Eqs. (34) and
(38) is excellent for all the values of the scattering coefficient and for both the refractive index
distributions Up and Dw. The figures also show (right panels) the deviation between MC results
and the RTE solutions which is within about two standard errors of the calculated fluence. The
MC results have been reported for a subset of 100 layers to assure a clear reading of the symbols
versus the depth z inside the slab. For the profile Up there is a discontinuity of the fluence rate
between the scattering and non-scattering cases: the fluence switches from the value given by
the invariance property [Eq. (34)], i.e., Φj ¼ 4ðnjneÞ2 Wm−2, to the value obtained with Eq. (38).

In Fig. 7, the two RTE curves for μs > 0 and μs ¼ 0 are indistinguishable. We can conclude
that also the calculations of fluence rate are very well verified with the exact solutions given
in Sec. 2.2.
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Fig. 6 Fluence rate for the profiles Up inside 100-layered slab for several values of the scattering
coefficient. (a) The results of MC simulations (symbols) and the RTE solution (continuous and
broken lines). The fluence rate is plotted against the depth from the external surface of the slab.
(b) The deviation between simulations and RTE solution normalized to the standard error.
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coefficient. (a) The results of MC simulations (symbols) and the RTE solution (continuous and
broken lines). The fluence rate is plotted against the depth from the external surface of the slab.
(b) The deviation between the Monte Carlo simulations and the RTE solution normalized to the
standard error.
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3.2.3 Comparisons for the mean path length

In Figs. 8 and 9, for the same 100-layered slab used for generating Figs. 4–7, we compared the
partial mean path length hLji spent inside the layers of the slab calculated with MC simulations
and with Eqs. (35) and (39). The agreement between MC and exact solutions is excellent and
very similar to that obtained for the fluence rate in the previous figures. For the profile Up, we
also have a discontinuity of hLji between μs ≠ 0 and μs ¼ 0: hLji switches from the value given

by the invariance property [Eq. (35)], i.e., hLji ¼ 2sjðnjneÞ2 (sj thickness of the layer j, in this

case, sj ¼ 0.1 mm), to the value obtained with Eq. (39). In Fig. 9, the two RTE curves for μs > 0

and μs ¼ 0 are indistinguishable. The deviation between MC results and RTE solutions is also in
this case within about two standard errors. We have thus evidence that also the calculations of the
mean path length are widely verified with the exact solutions given in Sec. 2.2.
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Fig. 9 Average internal path length hLj i spent in the layers of 100-layered slab for the profiles Dw
for several values of the scattering coefficient. (a) The results of MC simulations (symbols) and the
RTE solution (continuous and broken lines). The path length is plotted against the depth from the
external surface of the slab. (b) The deviation between simulations and RTE solution normalized to
the standard error.
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4 Discussion

In the proposed two-step verification method, we have exploited the complementary character-
istics of two kinds of benchmarks: one set of analytical benchmarks sensitive to the single-
scattering properties in an infinite medium and another set sensitive to the effects of boundaries.
Therefore, the two steps are useful to test an MC code for the correctness of trajectories extrac-
tion (first step) and the correctness of photons intersection with boundaries, including the
calculations of partial and total path lengths (second step). The proposed method significantly
extends the verification methods previously published in Refs. 2 and 3. In fact, the case of
isotropic scattering in an infinite medium can now be applied for any scattering order
[Eqs. (28)–(31)]. Moreover, the benchmark proposed in Martelli et al.,3 which specifically
focused on the calculation of partial and total mean path lengths, now also includes other fun-
damental radiometric quantities such as radiance and fluence rate.

The presented results show an increasing accuracy with the number of simulated trajectories,
which is limited only by machine precision. In practice, the results and the related t-tests confirm
the reliability of our MC code and serve as an example of the proposed approach.

Probably, at this point, it is not useless to repeat the following concept: the success of a test
(i.e., a null hypothesis not rejected) does not guarantee that a particular MC code performs cor-
rectly for all the cases envisioned. Only the failure of the test gives the certainty of having an
error inside the code.1 Thus, the careful reader should realize that, from a practical point of view,
no existing method allows us to detect 100% of the errors in an MC code. Nevertheless, we
believe that our proposed method is a valuable contribution to increasing the sensitivity of a
test to detect coding errors. Also, the two-step method allows one to be more specific about
the origin of the error, i.e., if it is caused by an incorrect implementation of the phase function
and trajectories’ extraction (step 1) or by an incorrect treatment of the boundaries (step 2). Thus,
in this frame, the present contribution certainly represents a fundamental improvement.

Another observation is about testing for absorption effects. Biological tissues are absorbing
media and the absorption coefficient is always considered in MC simulations. We notice that
even if the two-step method involves only non-absorbing media, this fact does not compromise
the generality of the verification. In fact, absorption does not change the photons’ trajectories and
its effect can be accounted for with a straightforward implementation of the mBLL,28 without
any computational criticality. At the core of the application of the mBLL is the correct evaluation
of the partial path lengths, which is tested in step 2 of our method.

One final observation is about the extension of step 2. In the examples reported in this work,
we simplified the application of the second step by using the symmetries of the media consid-
ered, which allowed us to implement the Lambertian illumination at one point of the external
boundary and use the reciprocity theorem to calculate the quantities of interest. However, we
stress that the proposed method can be applied to any complex geometry where a full Lambertian
illumination can be implemented. This would allow one to test an MC code (for the boundary
effects) directly for more realistic cases of interest, without resorting to simplifying the assump-
tions on the geometry and the distribution of the scattering properties. Future research will be
directed to verify the feasibility of this point.

5 Appendix: Moments for Isotropic Scattering Functions

In this appendix, we prove the validity of Eqs. (28)–(31) in Sec. 2.1.2. Equation (31) can be
derived with an exact procedure from the RTE according to the results of Ref. 32. A separate
proof must be given for Eqs. (28)–(30). We observe that the distribution function of the random
variable z2k, due to the pencil beam source emitting along z and to the hypothesis of isotropic
scattering, differs from the distributions of x2k and y2k by the first scattering order. After the first
scattering, due to the isotropic distribution of the scattering angle, the two distributions are indis-
tinguishable. For the first scattering order, both distributions of x2k and y2k are null. This fact
implies that the difference between hz2ki and hx2ki is given by the right term of Eq. (4). Let’s
verify this property. The random variable zk can be written as

EQ-TARGET;temp:intralink-;e040;116;81zk ¼ z1 þ ðzk − z1Þ ¼ z1 þ Δzk: (40)
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Therefore,

EQ-TARGET;temp:intralink-;e041;116;723z2k ¼ z21 þ Δz2k þ 2z1Δzk: (41)

We note that the random variables z1 and Δzk are independent and also that hΔzki ¼ 0 because
of the hypothesis of isotropic scattering. Thus, taking the average of the above equation, we get

EQ-TARGET;temp:intralink-;e042;116;667hz2ki ¼ hz21i þ hΔz2ki þ 2hz1ihΔzki ¼ hz21i þ hΔz2ki: (42)

And, because of the isotropic scattering, the random variables Δzk, xk, and yk have the same
distribution function. Thus we have

EQ-TARGET;temp:intralink-;e043;116;611hz2ki ¼ hx2ki þ
2

μ2s
¼ hy2ki þ

2

μ2s
: (43)

By exploiting Eqs. (31) and (43), we can write

EQ-TARGET;temp:intralink-;e044;116;5563hx2ki þ
2

μ2s
¼ 2k

μ2s
; (44)

from which we obtain

EQ-TARGET;temp:intralink-;e045;116;500hx2ki ¼ hy2ki ¼
2

3μ2s
ðk − 1Þ; (45)

which proves Eq. (28), and

EQ-TARGET;temp:intralink-;e046;116;444hz2ki ¼
2

3μ2s
ðkþ 2Þ; (46)

which proves Eq. (29). Finally, Eq. (30) is a trivial consequence of the above relations. Thus,
all the relations given in Sec. 2.1.2 for isotropic scattering are exact within the RTE.
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