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Abstract. Prior research has shown that physicians’medical decisions can be influenced by sequential context,
particularly in cases where successive stimuli exhibit similar characteristics when analyzing medical images.
This type of systematic error is known to psychophysicists as sequential context effect as it indicates that judg-
ments are influenced by features of and decisions about the preceding case in the sequence of examined cases,
rather than being based solely on the peculiarities unique to the present case. We determine if radiologists
experience some form of context bias, using screening mammography as the use case. To this end, we explore
correlations between previous perceptual behavior and diagnostic decisions and current decisions. We hypoth-
esize that a radiologist’s visual search pattern and diagnostic decisions in previous cases are predictive of the
radiologist’s current diagnostic decisions. To test our hypothesis, we tasked 10 radiologists of varied experience
to conduct blind reviews of 100 four-view screening mammograms. Eye-tracking data and diagnostic decisions
were collected from each radiologist under conditions mimicking clinical practice. Perceptual behavior was quan-
tified using the fractal dimension of gaze scanpath, which was computed using the Minkowski–Bouligand box-
counting method. To test the effect of previous behavior and decisions, we conducted a multifactor fixed-effects
ANOVA. Further, to examine the predictive value of previous perceptual behavior and decisions, we trained and
evaluated a predictive model for radiologists’ current diagnostic decisions. ANOVA tests showed that previous
visual behavior, characterized by fractal analysis, previous diagnostic decisions, and image characteristics of
previous cases are significant predictors of current diagnostic decisions. Additionally, predictive modeling of
diagnostic decisions showed an overall improvement in prediction error when the model is trained on additional
information about previous perceptual behavior and diagnostic decisions. © The Authors. Published by SPIE under a Creative
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1 Introduction
In clinical practice, timely and accurate diagnostic decisions
carry important implications for subsequent monitoring,
treatment, prognosis, and quality of life. Decisions on disease
occurrence are primarily based on well-defined criteria but, ulti-
mately, the judgment of the practitioner trained for this purpose
and shaped by years of experience plays the decisive role.
However, studies suggest that, even with experienced practi-
tioners, medical decision-making may also be influenced by
psychological factors including perception, cognition, emotion,
and other similar factors.1

Humans have an innate ability for detecting patterns when
presented with static visual stimuli. In addition, when exposed
to sequential or dynamic stimuli, humans have an advanced
ability to detect sequential patterns.2 While the capabilities
for processing visual patterns are historically advantageous
for certain adaptations for survival, they can pose problems
when performing tasks of an independent but sequential nature.
As such, when humans are faced with uncertainty while engag-
ing in predictive or discrimination tasks, which are sequential in

nature, there is a tendency for perceived patterns to subcon-
sciously influence or bias human decisions based on previous
states within the sequence.3–5

In addition to being sequential in nature, medical decisions
involve individual cases whose pathologies are independent
of one another, thereby creating additional potential for bias,
in which the practitioner may erroneously (subconsciously)
assume that future probabilities are affected by current outcomes
(such as mentally adjusting the prior probability distribution for
a given pathology after the occurrence of a streaky sequence).
This phenomenon is described in literature as context effect.6,7

1.1 Factors Affecting Diagnostic Accuracy

Several factors influence the occurrence of error in the
decision process in medical diagnosis. These errors can affect
subsequent treatment and have a significant negative impact
on patients. In mammography, the characteristics of a case,
such as breast density,8,9 physician experience levels, and met-
rics describing the visual search process have been associated
with the occurrence of diagnostic error during the interpretation
of mammograms.10–14 Studies have examined the perceptual
and cognitive dimensions in visual diagnosis.

Perceptual errors, i.e., errors where the observer fails to rec-
ognize an abnormality in an image during the detection phase,
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are a primary cause of missed diagnoses in radiology.15,16 These
types of errors result from cognitive biases,17–19 faulty visual
search,20,21 or a combination of both. Since there are interrelated
cognitive contributors to visual errors, understanding the cogni-
tive processes involved during the interpretation of images can
shed light on inherent biases that occur and how these impact
diagnostic decisions.

1.2 Local Sequential Context Bias

Prior research has shown that medical decisions can be
influenced by sequential context, particularly in cases where
successive stimuli exhibit similar characteristics. Laming22

investigated systematic errors in diagnostic decisions in screen
cervical smears. Laming reported that experienced pathologists
made systematic errors resulting from psychological inter-
actions in successive cases and offered recommendations on
prevention. This type of systematic error, peculiar to sequential
stimulus with similar characteristics (as is the case in mammog-
raphy), indicates that judgments are influenced by features of
and decisions about the preceding case in the sequence of exam-
ined cases, rather than being based solely on the peculiarities
unique to the present case. This type of cognitive bias,
known to psychophysicists as sequential context effect,23–25 is
studied in radiology literature and referred to in some cases
as context bias.4,5

1.3 Global Sequential Context Bias

In contrast to local sequential context bias, global sequential
context bias refers to the ability to detect patterns in sequences,
such as prevalence in a specific type of case, and subconsciously
adjusting a priori probabilities accordingly. In clinical practice,
the sequential nature of diagnostic imaging, combined with the
ability to detect patterns increases the possibility for biased deci-
sions particularly in borderline cases where the practitioner may
be less certain of the diagnostic decision. While previous studies
have focused on the occurrence of bias resulting from case
prevalence recognized within the case sequence (which may
be a test-specific phenomena), fewer have studied the effect
of prior diagnostic decisions on subsequent ones.

Sequential biases may occur in combination particularly in
borderline cases where the contextual similarities with a pre-
vious case and the inference of case prevalence in case sequence
combine to influence diagnostic decisions. In this work, we
examine the diagnostic decisions of radiologists with varied lev-
els of experience to determine if and to what extent contextual
biases occur and if these occurrences can be predicted. To this
end, we explore correlations between current and present per-
ceptual behavior, diagnostic decisions, and case characteristics.
We hypothesize that radiologist’s prior perceptual behavior and
cognitive decisions are predictive of current decisions. To test
our hypothesis, we tasked 10 image readers of varied experience
to conduct blind reviews of 100 x-ray images. Eye-tracking data
and diagnostic decisions were collected from each reader while
reviewing four-view mammographic cases under conditions
mimicking clinical practice.

2 Methods

2.1 Data Collection Protocol

A description of methods for this study is provided in detail
in a previous work.10 Briefly, we selected 100 screen-film

mammograms from a corpus of mammographic cases available
from the University of South Florida’s Digital Database for
Screening Mammography26 (DDSM). Each case included the
craniocaudal (CC) and mediolateral oblique views (MLO) of
both breasts with associated ground truth using BI-RADS™
lexicon.27 Fifty percent of the selected cases were malignant,
whereas the remaining 50% was evenly split between normal
and benign pathologies. The parenchymal density ranged
between 1 (fatty) to 4 (dense), according to the BI-RADS™
lexicon.

For this study, each of the 10 participants (three board certi-
fied radiologists and seven radiology residents) performed a
review of all 100 cases and provided a report on location and
corresponding BI-RADS™ rating of any suspicious mass.
Reviews were conducted independently, and markings and
BI-RADS™ ratings were reported by each reader through a cus-
tom-built graphical user interface, which allowed for image
manipulation on dual displays as customary in clinical practice.
Readers were outfitted with H6 head-mounted eye-tracking
device, with a 60-Hz sampling rate, designed with eye-head
integration from Applied Science Laboratories (ASL, Bedford,
Massachusetts). Through the remote eye-tracking device, read-
ers’ eye-position data were recorded to within 0.5-deg visual
accuracy. Institutional review board approval was obtained
prior to conducting this study. Human subject recruitment and
data collection were performed according to a protocol approved
by the Oak Ridge Site-Wide Internal Review Board. All readers
reviewed and signed an informed consent form prior to
participation.

Cases for each reader were presented in a randomized order.
Although readers examined an identical set of cases, ordering
resulting from the randomization process differed for each
one. In addition, readers were permitted to complete the
study in multiple sessions to accommodate personal preferences
and scheduling conflicts. Some readers completed the experi-
ment in two or more sessions on the same day, whereas others
completed the experiment over two or more days.

2.2 Data Processing

Details describing data preprocessing is provided in a previous
work.10 In summary, eye-position data for each reader was
aggregated from mammographic views across two displays
and first preprocessed to extract a time ordered sequence of fix-
ations along with other associated measures (including fixation
duration, interfixation degree, and pupil size) using EyeNAL
analysis software from ASL.28 Data provided through EyeNAL
software can be further processed to extract more informative
features for a deeper analysis.

For our analysis, we used raw gaze data from eye movements
to characterize overall visual behavior. Specifically, we charac-
terize the trajectory of the scanpath using a metric known as
fractal dimension (FD). The scanpath describes the trajectory
of eye movements formed when time-ordered fixations or
gaze points are connected. From the scanpath, we computed
the FD) using the Minkowski–Bouligand box-counting
method29 as a measure of complexity in search behavior for
each case. Information describing the computation and analysis
of this metric can be found in detail in a previous work.10

The 10 participating readers were grouped into one of three
experience levels according to years of training and practice:
new trainee resident (N) for those residents with at most two
mammo rotations, advanced trainee resident (A) for those
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residents with greater than two mammo rotations, and expert
radiologist (E) for board-certified mammographers. Reported
diagnostic decisions for each case were mapped into one of
the three case pathologies (normal, benign, and malignant)
based on BI-RADS™ rating. Cases without markings (i.e., no
scores were given) were designated normal (N); BI-RADS™
ratings {2 and 3} as benign (B); and BI-RADS™ ratings
{4A, 4B, 4C, and 5} as malignant (M). Three breast parenchyma
density groupings were formed by combining heterogeneous
and dense parenchymal cases in the same density grouping
because of a small sample size.

Data for each reader were structured into overlapping pairs
such that the n’th case (Cn) was paired with k previous cases
(Cn−i, where i is an integer between 0 and 5) with each n’th
case representing the current visual behavior and diagnostic
decision, and the i preceding cases representing previous visual
behavior and diagnostic decisions. Each pair represents the read-
er’s diagnostic decision for the current case (Cn), and the pre-
vious behavior and diagnostic decisions (

S
5
i¼0 Cn−i), which may

have potentially impacted it.
Our analysis was performed on each pair by extracting case

descriptors. Namely, visual behavior, computed as the FD of
scanpath, diagnostic decisions determined as BI-RADS™ rat-
ings reported by each reader for the respective cases, and
image characteristics/properties for which we utilize the breast
parenchymal density (Fig. 1).

2.3 Statistical Methods

To perform an initial analysis into the temporal relationship in
behavior during mammographic screening, we used a statistical
tool: autocorrelation function. Autocorrelation captures the
Pearson correlation between values of a sequential process at
different times, as a function of these times or the lag between
them. It enables finding the correlation between previous mea-
sures and measures at subsequent time intervals.

In regression analysis using time series data, autocorrelation
in a variable of interest is typically modeled with an autoregres-
sive moving average model (ARMA). We represent the
sequence of mammographic cases seen by each radiologist as

a time series (C1; C2; : : : ; Cn). The autocorrelation function
gives the correlation (y axis) between the value of measurements
at Cn and the value of measurements at Cn−k as a function of k,
where k is an integer representing the lag (x axis).

To determine any combined or individual dependencies
between the current diagnostic decisions and the radiologists’
current and previous visual behavior, previous diagnostic deci-
sions, and characteristics of the current and previous images, we
performed a multifactor fixed-effects ANOVAwith six levels for
diagnostic decision (based on the BI-RADS™ rating provided),
three levels for breast parenchyma density, and the FD of scan-
paths for eye movements.

3 Results
Data from all 10 radiologists who participated in reading mam-
mographic cases were included in this analysis. Each radiologist
interpreted 100 cases, resulting in 1000 individual interpreta-
tions. We performed analysis on data from each radiologist
independently.

3.1 Autocorrelation Tests for Randomness

Autocorrelation is the correlation between a time series lagged
one or more time periods and itself. The autocorrelation plot
provides a visual representation of the degree of dependence
(or independence) between a given time series or sequence
and a lagged version of itself over successive intervals. In Fig. 2,
we illustrate the autocorrelation function graphs of the FD of
scanpaths and of the diagnostic decisions for a subset of readers.

The autocorrelation coefficient summarizes the strength of
the relationship between present and past values. The shaded
region in the graph represents a 95% confidence interval for sig-
nificance (i.e., those points within this shaded region do not
meet this criteria for statistical significance). From Fig. 2, we
note a number of nonsignificant correlation peaks, which tend
to indicate a random average distribution. However, in a number
of cases we identify several significant (p < 0.05) peaks, which
show both strong (rk ≥ 0.5) and weak (0.5 > rk > 0.2) correla-
tion between sequences at their respective time lags.

3.2 Analysis of Variance

For our analysis, we restricted previous behavior and diagnostic
decisions to five preceding cases. Therefore, each pair of obser-
vations consisted of the current diagnostic decision (dependent
response variable) and a set of the current visual behavior and
breast parenchymal density, along with the diagnostic decision,
visual behavior, and breast parenchymal density of the five pre-
ceding cases (factors).

A multifactor fixed-effect ANOVA was performed to deter-
mine any individual or combined dependencies of the current
diagnostic decision on current and previous behavior and diag-
nostic decisions. The ANOVA was performed individually for
each reader. First, we mapped the diagnostic decision for
each case to one of seven categories based on the provided
BI-RADS™ rating: cases without markings (i.e., no scores or
marks were given); BI-RADS™ ratings {2 and 3}; and BI-
RADS™ ratings {4A, 4B, 4C, and 5}. We formed three breast
parenchymal density groupings (fatty, fibroglandular, and
heterogeneous/dense). This was achieved by combining hetero-
geneous and dense cases in a single group, which became nec-
essary resulting from a small sample size.

Fig. 1 Illustrates potential sequential dependence between diagnos-
tic decisions (Dn) for a case (Cn) and the visual behavior (FD Fn−i ),
breast parenchymal density (Pn−i ), and diagnostic decisions (Dn−i )
during i previous cases (Cn−i ).
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Next, we formed pairs of observations with the current diag-
nostic decision at case n (Dn) as the response variable, and the
current and previous estimates for the FD of scanpath
(Fn; Fn−1; Fn−2; : : : ; Fn−5) (continuous factor), the parenchy-
mal density for the current and previous cases (Pn; Pn−1;
Pn−2; : : : ; Pn−5), and previous diagnostic decisions (Dn−1;
Dn−2; : : : ; Dn−5), as independent factors. In Table 1, we summa-
rize the ANOVA results by presenting a subset of statistically
significant individual and combined effects.

3.3 Predictive-Model-Based Analysis

As described in Sec. 3.1, each data point consists of a pair:
diagnostic decision (Dn) at case Cn as target, and reader’s diag-
nostic decision and behavior for Cn−i previous cases, where 0 ≤
i ≤ 5 (our analysis was limited to a maximum of five previous
cases) as features. This process results in six distinct datasets
representing

S
5
i¼0ðCn; Cn−iÞ pairings with a maximum of m ¼

100 − i samples for each subject in each dataset. During the
experimental protocol (described in Sec. 2.1), readers were per-
mitted to complete the experiment over multiple sessions. The
final number of pairs for each reader varied 85 to 98 (with a
median value of 94) dependent upon the number of sessions,
resulting in m ¼ 100 − i × ðsþ 1Þ pairs, where s is the total
number of sessions.

To assess the predictive potential of the observed dependen-
cies between current diagnostic decisions and previous behav-
ior, we developed a predictive model using a random forest
classification model. The model was evaluated using a
within-subject leave-one-case-out cross-validation model evalu-
ation scheme. To achieve this, data were first partitioned into 10

independent datasets, representing response data from each of
the 10 readers. Leave-one-case-out cross-validation scheme par-
titions each dataset into complementary subsets, where all but a
single data sample is utilized in model-training (training set),
which analysis is validated on the excluded sample (test
case). This process is repeated until every sample in the dataset
is utilized as the singular test case, resulting inmmodels (where
m is the total number of samples).

The aggregated predictive values over all rounds serve as the
final performance evaluation of the predictive model for each
user. In this paper, we report the weighted-average f-score
(the harmonic mean of precision and recall) performance met-
rics for predicting diagnostic decision on a current case using
features derived from previous behavior and diagnostic deci-
sions. In Table 2, we report the f-score for each user by i (num-
ber of previous cases) and, for comparison purposes, Table 2
also includes performance metrics for a random chance classi-
fier (a random classifier provides a simple baseline reflecting the
predictive outcome of a random guess).

4 Discussions and Conclusion
In this study, we examined the potential for bias in diagnostic by
analyzing visual behavior and diagnostic decisions of 10 radi-
ologists viewing mammograms for breast cancer screening. To
this end, we performed autocorrelation tests, analyses of vari-
ance, and predictive-model-based analysis on the diagnostic
decision and visual behavior (characterized using the FD of
scanpath) for individual readers’ case sequences to determine
if temporal dependencies exist between current and previous
behavior and decisions.

Fig. 2 Illustrates autocorrelation function plots for some readers: (a, b) FD of scanpath and (c, d) diag-
nostic decision.
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The results from the autocorrelation tests show significant
(p < 0.05), strong (rk ≥ 0.5), and weak (0.5 > rk > 0.2) corre-
lation rk, in sequences of both visual behavior and diagnostic
decisions for 7 of the 10 subjects reported in this study. We
also note the occurrence of stronger sequential dependencies,
indicated by large correlation coefficient (rk) in visual behavior
in comparison to diagnostic decisions, which show a weaker
correlation.

The ANOVA tests conducted determine a number of signifi-
cant individual and combined effects on current diagnostic deci-
sions. These results, presented in Table 2, suggest that visual
search behavior during previous cases can serve as combined
predictors of current diagnostic decision. In addition, visual
search behavior, breast parenchymal density, and diagnostic
decisions during previous cases are combined predictors of cur-
rent diagnostic decisions. This observation is consistent across
readers with a variation in the combination of factors.

The predictive-model-based analysis was performed on a
random forest classification model trained using a leave-one-
out cross-validation scheme on each individual reader. Our
results show an f-score of 0.54 averaged over all case-pairing
datasets, which represents a 64% improvement over random
chance (0.33). The notably higher predictability of the current
diagnostic decision of new radiology residents (0.66 f-score
averaged over all case-pairing datasets) using data from previous
visual behavior and diagnostic decisions, compared with
advanced radiology residents (0.48 f-score averaged over all
case-pairing datasets), and experienced radiologists (0.49
f-score averaged over all case-pairing datasets), indicates that
new residents may be more susceptible to sequential context
bias. However, data from the current experiments are not suffi-
cient to establish the significance of this observation. The pre-
dictive performance results also show, with the exception of two
readers (both advanced radiology residents), an increase in

Table 1 Multifactor fixed-effect ANOVA test results with FD (F ) of scanpath, prior diagnostic decision (D), and breast parenchymal density (P) for
readers by experience level: new (N) and advanced (A) radiology resident, and expert (E) radiologists.

Reader Factor F p > F

E3 F 0∶P0∶F 1∶D1∶F 2∶P2∶D2 13.76 <1e−3

N1, N2, A3, E1 F 0∶F 1∶F 3∶F 4∶F 5 9.17 <1e−3

A3, E1 F 0∶F 2∶F 3∶F 4 8.39 0.01

A3 F 0∶P0∶F 1∶P1∶D1∶D2 6.97 0.01

N1, N2, A3, E1 F 0∶F 1∶F 2∶F 3∶F 4∶F 5 6.83 0.01

A2, A3 F 0∶F 3∶F 4∶F 5 7.55 0.01

N1, E2 P0∶F 0∶F 1∶P1∶D1∶F 2∶P2∶D2∶F 3∶P3∶D3 6.40 0.01

E1 P0∶F 0∶F 1∶P1∶D1∶P2∶D2 6.35 0.01

E3 P0∶F 1∶P1∶D1 6.34 0.01

A2, E2 F 0∶F 1∶P1∶D1∶F 2∶P2∶D2 6.20 0.02

N3, A1 P0∶F 0∶F 1∶P1∶D1∶F 2∶P2∶D2∶P3∶D3 6.08 0.02

A4 D1∶D2∶D3∶D4 6.02 0.02

N1, N2, A4, E3 P0∶F 0∶F 1∶P1∶D1 5.94 0.02

A2, E3 F 0∶D1∶F 2∶P2∶D2 5.88 0.02

A4 F 0∶P1∶D1∶F 2∶P2∶D2 5.42 0.02

A2 P0∶F 0∶F 1∶P1∶D1∶F 2∶P2∶D2∶P3 5.33 0.02

N3, A1, A2 F 0∶F 1∶F 3∶F 4 5.63 0.03

N1 P0∶F 0∶F 1∶P1∶D1∶F 2∶P2∶D2∶F 3∶P3∶D3∶F 4∶P4∶D4 5.18 0.03

E2 D1∶D2∶D3∶D5 5.21 0.03

N1, E1, A1, A3 P0∶F 0∶F 1∶P1∶D1∶F 2∶P2∶D2∶F 3∶P3∶D3∶F 4∶P4∶D4∶P5∶F 5 5.11 0.03

E2 P0∶F 0∶F 1∶P1∶D1∶F 2∶P2∶D2∶F 3∶D3 4.36 0.04

N1 F 1∶P1∶D1∶F 2∶P2∶D2 4.37 0.04

N1, A4 P0∶F 1∶D1∶F 2∶P2∶D2 4.21 0.04
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performance when information from previous cases is intro-
duced into the model [Mn <

S
5
i¼0ðMn;Mn−iÞ�).

This study represents a step in the investigation of contextual
biases in medical diagnosis through the incorporation of sensor-
based measurements of visual behavior in the analysis of biases
in mammographic readings. Our findings suggest that new radi-
ology residents are most susceptible to context bias, causing
their diagnostic decisions to be predictable given previous
behavior and diagnostic decisions. However, our findings
also suggest that more advanced radiologists experience some
level of context bias.

There are limitations of this study, which need to be consid-
ered. The first and foremost is the inherent nature of experiments
of this nature. The results from this test indicating contextual
bias may be an artifact of the experimental design. We are
unable to determine whether bias observed in participating radi-
ologists reflects their individual altered expectations of case
prevalence within the study or, if it is applicable, in clinical
practice.

Further, interruptions during multiple sessions in all partici-
pating readers resulted in the exclusion of ∼15% of data col-
lected in this study. Our analysis treats these discontinuities
as the beginning of a new experiment by ignoring the first
few samples, the number of which is dependent on the number
of previous cases being considered. However, it is possible that a
number of sessions were interrupted for the purpose of clinical
diagnosis as experiments were performed in the clinician’s work
place. Our analyses do not factor the influence of these interme-
diary cases on diagnostic decisions after the reader resumes the
experiment.

In conclusion, breast parenchymal density, visual behavior,
and diagnostic decisions in previous cases may serve as predic-
tors of current diagnostic decisions indicating contextual bias in
radiologists’ review and diagnosis of mammographic images in

testing situations. We are unable to ascertain the veracity of
these claims in clinical practice. However, in the event that
these observations apply in clinical practice, a deeper under-
standing of how these biases occur, and additional factors,
which improve predictability of these biases, will be invaluable
in improving training methodology and reducing the occurrence
of errors in diagnostic imaging.
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