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Abstract

Purpose: Sharing medical images between institutions, or even inside the same institution, is
restricted by various laws and regulations; research projects requiring large datasets may suffer
as a result. These limitations might be addressed by an abundant supply of synthetic data that
(1) are representative (i.e., the synthetic data could produce comparable research results as the
original data) and (2) do not closely resemble the original images (i.e., patient privacy is pro-
tected). We introduce a framework that generates data with these requirements leveraging gen-
erative adversarial network (GAN) ensembles in a controlled fashion.

Approach: To this end, an adaptive ensemble scaling strategy with the objective of representa-
tiveness is defined. A sampled Fréchet distance-based constraint was then created to eliminate
poorly converged candidates. Finally, a mutual information-based validation metric was
embedded into the framework to confirm there are visual differences between the original and
the generated synthetic images.

Results: The applicability of the solution is demonstrated with a case study for generating
three-dimensional brain metastasis (BM) from T1-weighted contrast-enhanced MRI studies.
A previously published BM detection system was reported to produce 9.12 false-positives at
90% detection sensitivity based on the original data. By using the synthetic data generated with
the proposed framework, the system produced 9.53 false-positives at the same sensitivity level.

Conclusions: Achieving comparable algorithm performance relying solely on synthetic data
unveils a significant potential to eliminate/reduce patient privacy concerns when sharing data
in medical imaging.
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1 Introduction

Neural networks with deeper (i.e., with higher numbers of layers) and progressively more
sophisticated architectures revolutionized the field of computer vision over the last decade.1

These mathematical models, also referred to as deep neural networks (DNNs), were utilized
for various medical imaging applications including segmentation/extraction of regions of inter-
ests, object/lesion detection, and classification tasks.2,3 As DNNs are highly parametric (i.e.,
requiring a vast amount of parameters to be optimized), the accuracy and generalizability of
the developed models heavily depend on the scale of the dataset.4 However, sharing medical
data is difficult due to several laws and regulations designed to protect patient privacy.5

*Address all correspondence to Engin Dikici, engin.dikici@osumc.edu
†The indicated authors were affiliated with The Ohio State University at the time the work was done.

2329-4302/2021/$28.00 © 2021 SPIE

Journal of Medical Imaging 024004-1 Mar∕Apr 2021 • Vol. 8(2)

https://orcid.org/0000-0001-5536-3157
https://orcid.org/0000-0002-1133-7819
https://orcid.org/0000-0003-3637-0102
https://orcid.org/0000-0002-6768-6452
https://doi.org/10.1117/1.JMI.8.2.024004
https://doi.org/10.1117/1.JMI.8.2.024004
https://doi.org/10.1117/1.JMI.8.2.024004
https://doi.org/10.1117/1.JMI.8.2.024004
https://doi.org/10.1117/1.JMI.8.2.024004
https://doi.org/10.1117/1.JMI.8.2.024004
mailto:engin.dikici@osumc.edu
mailto:engin.dikici@osumc.edu
mailto:engin.dikici@osumc.edu


While there are multiple successful initiatives for aggregating multi-institutional datasets,6–8

public availability of large-scale datasets focused on specific modalities and medical conditions
is limited.9

One way to partially address the data deficiency problem is to augment the available data
with synthetic ones based on originals. Generative adversarial networks (GANs),10 which exploit
adversarial loss functions to generate realistic synthetic data,11 have been utilized for the aug-
mentation purposes in medical imaging.12–16 However, as reported by Bowles et al.,13 GAN-
generated data are commonly not representative enough to replace the original data; thus, they
were used as a complementary tool to maximize the gain from the original data by smoothing the
information domain with more samples. Furthermore, GANs have the potential to generate syn-
thetic images that are identical with or closely resemble the original images,17,18 potentially
resulting in patient privacy concerns.

The goal of this paper is to introduce a framework to generate synthetic data that are (1) rep-
resentative (the synthetic data could produce comparable research results as the original data)
and (2) do not closely resemble the original images; thus, sharable. Accordingly, the ensemble of
GANs approach,19 having the premise of improving the generalizability of GANs, is further
advanced with the aforementioned aspects. To this end, an adaptive ensemble scaling strategy
is first defined with the goal of ensuring representativeness of the synthetic images. The appro-
priate growth of an ensemble depends on its member-performances; hence, a sampled Fréchet
distance (SFD) metric is introduced to eliminate poorly converged candidates during the ensem-
ble growth-process. Finally, a mutual information (MI)-based verification stage is embedded into
the framework to ensure the generated data do not include samples that are either identical to or
closely resembling the originals. In an ideal deployment scenario, multiple institutions would
generate synthetic datasets with the presented approach then share it with other institutions; this
would enable research projects to be performed with vast synthetic datasets vetted to represent
their originals. The applications of GAN, GAN ensemble, and the introduced constrained GAN
ensemble in medical image synthesis are shown in Fig. 1.

Fig. 1 (a) GAN, (b) GAN ensemble, and (c) constrained GAN ensemble for medical image
synthesis.

Dikici et al.: Constrained generative adversarial network ensembles for sharable synthetic medical images

Journal of Medical Imaging 024004-2 Mar∕Apr 2021 • Vol. 8(2)



This report first describes the framework for forming a constrained GAN ensemble. Then, it
represents the applicability of the proposed methodology via a case study: synthesizing 3D brain
metastatic region data for T1-weighted contrast-enhanced MRI studies. In the given application,
3D regions of interest containing cerebral metastases were generated using the introduced con-
strained GAN ensemble framework. Then, the generated synthetic data were used for training a
previously published brain metastasis (BM) detection system.20 Section 3.3 compares the accu-
racies of the system trained with the synthetic and original data. The report concludes with a
discussion of the results, system limitations, and future work considerations.

2 Material and Methods

2.1 Standard GAN and the GAN Ensemble

The GAN is a generative machine learning model used in various applications of computer
vision including image synthesis.21 A typical GAN is formulated with two neural networks
(i.e., generator and discriminator) that are optimized in tandem for a minimax problem:

EQ-TARGET;temp:intralink-;e001;116;537minG maxD VðD;GÞ ¼ Ex∼pdata
½log DðxÞ� þ Ez∼pnoise

½logð1 −DðGðzÞÞÞ�; (1)

where (1) D and G are the discriminator and synthetic data generation models, (2) pdata is the
unknown probability distribution function (PDF) for the real data, and (3) pnoise is the PDF for
the generator’s noise type input (typically uniform or Gaussian). Over the recent years, various
GAN formulations modifying the network architectures and/or loss functions were proposed,22

whereas depending on the target data type and problem domain, some formulations were shown
to be more applicable than the others.23

One of the most common problems in GANs is the limited generalizability of their solutions,
emerging from the limited representation of information. State-of-the-art GAN formulations
such as those in Refs. 24–26, and multiple hypothesis-based techniques (utilizing parts or all
of GAN architecture) including the ensembles,19,27 generator-mixture,28 and multiagents,29 were
proposed to tackle/reduce the problem. While our solution is agnostic and leaves the selection of
the GAN type as a design choice of the researcher, it introduces an ensemble growth strategy to
provide representative synthetic datasets.

The ensemble of GANs is an algorithm, where multiple GANmodels (regardless of the GAN
formulation) are trained using a single training dataset, then the synthetic data are generated via a
randomly picked ensemble member for each synthetic data request.19,30 It was shown that the
ensemble of GANs outperforms a single GAN with respect to the information coverage, com-
puted using Wilcoxon signed-rank test,31 and a manifold projection distance metric.19 The results
outline the common traits of ensembles; (1) the avoidance of overfitting due to multiple hypoth-
eses covered by its components, (2) reduced chance of stagnating at local optima as each com-
ponent runs its optimization process individually, and (3) improved representation of the optimal
hypothesis since the combination of different models commonly expands the solution search
space.32,33 The approach was further customized by (1) integrating ensemble members with sim-
ilar network initializations to speed up the training process (self-ensemble of GANs) and
(2) using discriminator feedbacks to detect/improve GANs with limited information coverage
(cascade of GANs).19

2.2 Technical Contributions: Objective Oriented Ensemble Formulation

2.2.1 Ensemble growth strategy

The commonly used optimization goals for the generative algorithms, such as (1) minimizing
information divergence from the original data34 (e.g., computed via Jensen–Shannon, Kullback–
Leibler), (2) generating subjectively highly realistic outputs (e.g., visual Turing test35), or
(3) information coverage optimization (e.g., Wilcoxon signed-rank test), do not necessarily lead
to the generation of researchwise representative data:13 The representativeness in this context is
the ability to produce comparable research results using the synthetic data as with the original
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data. The complex metric of representativeness would require the execution of a complete val-
idation study with an external algorithm for a new set of data at each optimization step; thus, it is
not part of any generative approach, including the ensemble of GANs. In this study, we propose
an adaptive growth strategy for GAN ensembles to address this objective by introducing an
additional computational overhead as:

– The baseline performance using an algorithm executed on the original data is defined as

EQ-TARGET;temp:intralink-;e002;116;663ϑo ¼ PðA;DoÞ; (2)

where (1) A is the algorithm, referred to as the validation model (e.g., cardiac segmentation, liver
tumor detection, etc.), (2) Do is the original data set, (3) P is the evaluation methodology [e.g.,
N-fold cross-validation (CV), bootstrapping, etc.], and (4) ϑo is the baseline performance value
(e.g., Dice score, the area under the receiver operating characteristic curve, etc.).

– Temporary ensemble performance is described as

EQ-TARGET;temp:intralink-;e003;116;573ϑi ¼ PðA;Di ¼ EiðDoÞÞ with jDij ¼ jDoj; (3)

EQ-TARGET;temp:intralink-;e004;116;530∀ d ∈ Di; Ei←
R
e and d ¼ eðz ∼ pnoiseÞ; (4)

where (1) ϑi is the temporary ensemble performance, (2) Di ¼ EiðDoÞ is the data set generated
by the ensemble’s i’th iteration with the same size as the original data, and (3) each data d in Di

is generated by a random member of Ei called e; receiving noise type input z.
– The growth of the ensemble can be halted when the ensemble performance becomes com-

parable with the baseline performance; jϑo − ϑij ≤ ε, where ε gives the acceptable performance
gap threshold. Divergence of the performance with the growth of the ensemble might indicate
(1) improper GAN formulation selection or its parametrization and/or (2) inadequate original
training data; therefore, they need to be reconsidered.

2.2.2 Ensemble member constraint

While the proposed ensemble growth strategy is intuitive, it causes a significant computational
overhead due to the iterative calculation of the temporary ensemble performance. The issue
could be partially addressed by computing the performance metric periodically (e.g., after every
10 additional GAN members) instead of each iteration. However, the number of iterations could
still be high, depending on the individual performances of ensemble members:33 Diverged or
mode-collapsed members would fail to produce plausible synthetic samples making the ensem-
ble overgrown and inefficient.

The Fréchet inception distance (FID)36 was introduced for evaluating a GAN performance;
the Fréchet distance between the original and synthetic data’s lower-dimensional manifold rep-
resentations extracted from the Inception model37 is used for model assessment. The FID allows
the robust detection of mode-collapsed and diverged GAN models.38 However, as the Inception
network is trained for two-dimensional (2D) color images of random scenes in ImageNet,39 the
metric cannot be used for the evaluation of models that produce any-dimensional (e.g., 3D, 3D
+T, etc.) medical imaging data. Accordingly, we propose an SFD that is mostly identical with the
FID whereas differing with respect to its inputs as

EQ-TARGET;temp:intralink-;e005;116;202f2ððmr;CrÞ; ðmg; CgÞÞ ¼ kmr −mgk22 þ TrðCr þ Cg − 2ReðCrCgÞ1∕2Þ; (5)

where (1) ðmr; CrÞ and ðmg; CgÞ give original and generated data’s sampled mean and covariance
tuples, respectively, and (2) Re gives the real components of its input. Unlike the FID (which
uses lower-dimensional representation extracted from a pretrained Inception model), the metric
uses the flattened vector representations for the downsampled original and synthetic data with
the assumption of these having multivariate Gaussian distributions. Hence, it can be used for
evaluating any generative model by verifying f2 < ω, with ω giving the maximum allowed SFD
between synthetic and original samples.
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2.2.3 Visual resemblance test

The shared synthetic data are strictly forbidden to be identical with the original data for protect-
ing the patients’ privacy. Therefore, each synthetic data sample needs to be compared with the
original data set. While voxelwise image comparison (e.g., mean square difference, etc.) might
be adequate to eliminate synthetic samples having high visual similarity with the originals, it
would not necessarily detect statistically dependent samples (e.g., intensity inversed version of
an image, etc.). Thus, we propose a MI-based metric defined for each synthetic sample as:

EQ-TARGET;temp:intralink-;e006;116;644Imax ¼ argmaxn∈f1;NgðHðTðdgÞÞ −HðTðdgÞjdo;nÞÞ; and Imax ≤ φ; (6)

where (1) N is the number of original training samples (i.e., jDoj), (2) dg is the synthetic sample,
(3) do;n is the n’th original sample, (4) TðdgÞ is the geometrically transformed synthetic sample
(i.e., translation, rotation), (4) HðTðdgÞÞ is the Shannon entropy of the synthetic sample, and
(5) HðTðdgÞjdo;nÞ is the conditional entropy. Accordingly, Imax gives the maximum MI between
the synthetic sample and all real samples, and φ is the maximum acceptable MI; a synthetic
sample with Imax > φ is not shared due to its high similarity with an original sample(s).
This stage may also be described as finding an optimal (i.e., based on MI) rigid transformation
between the synthetic sample and all real samples, then eliminating the synthetic one if it returns
a high MI.

2.2.4 Framework

The described ensemble growth strategy, member constrain, and visual resemblance test can be
integrated into a framework for the synthetic data generation:

1. The baseline performance (ϑo) is computed using a validation model (A) on the original
data set (Do).

2. A proper GAN formulation is chosen for the target data type. The ensemble is grown with
the selected type of GANs to produce synthetic samples having SFD with the originals less
than a threshold (ω).

3. Step 2 is repeated iteratively until the baseline performance metric is achieved with an
acceptable performance gap (ε) using the ensemble generated data. If the temporary
performance ðϑiÞ diverges, then the GAN type and ω are reconsidered.

4. The matured ensemble’s output is validated using the visual resemblance test; the
synthetic samples having low MI (≤φ) with the original data set are shared.

3 Case Study: 3D Brain Metastasis Data Generation

3.1 Problem Definition

The BMs are the most common form of brain cancer, where 20% to 40% of cancer cases have
this complication. The metastatic lesions can vary significantly in size and appearance; early
forms of the disease present as punctate foci measuring as small as 1 mm in diameter. In
Ref. 20, the authors have proposed an approach for the detection of particularly small BMs,
with diameters of ≤15 mm, for the gadolinium-enhanced T1-weighted 3D MRI. Briefly, the
method first determines all BM candidates using an information-theory-based algorithm. Next,
the candidates are processed using a parametrized deep-neural-network formulation (CropNet)
to give the final BM detections; the CropNet learns the statistical representation of a BM from
isometric metastatic region volumes with 16-mm edge length and differentiates it from any other
similar size volumetric region extracted from the brain image. The approach was validated using
fivefold-CV on 217 datasets acquired from 158 patients including 932 BMs in total. It was
reported to produce 9.12 average number of false-positive BMs for 90% detection sensitivity.
An interested reader is referred to Ref. 20 for detailed information on (1) the algorithm, (2) data
collection and scanner parameters, and (3) dimensional histograms of BMs used in that
study.
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In the detection study, while negative samples were abundant (random volumetric extractions
from brain images), BM regions were limited (932 3D volumes with 16 mm edges).
Accordingly, the purpose of this case study is to generate synthetic BM regions using the con-
strained GAN ensemble framework. The ensemble growth objective is set as the detection sys-
tem trained with the synthetic samples produces a comparable number of false-positives for the
given sensitivity level using the same dataset used in Ref. 20:

EQ-TARGET;temp:intralink-;e007;116;663

A∶ The BM detection algorithm;

ϑo∶ 9.12 false positives at 90% detection sensitivity;

Do∶ 932BM region volumes from 217 datasets;

P∶ fivefold CV: (7)

3.2 Framework Setup and Parameters

3.2.1 GAN setup

In this case study, deep convolutional GANs (DCGANs)40 were utilized as the ensemble mem-
bers for generating 3D brain metastatic regions segmented from T1-weighted contrast-enhanced
MRI. The formulation was chosen as it has been successfully deployed for medical image syn-
thesis in numerous previous studies.12,15,41,42 The DCGAN was originally designed for 2D
images; hence, we adapted it for 3D by (1) modifying the generator ðGÞ to produce 16 × 16 ×
16 volumes that represent cropped BM regions, and (2) modifying the discriminator ðDÞ to
classify volumetric input type. The implemented DCGAN architecture is shown in Fig. 2, and
some examples for the real and DCGAN generated synthetic BM samples are shown in Fig. 3.
All ensemble members are proposed to have the same network architecture.

Fig. 2 (a) The generator and (b) discriminator networks of the used 3D DCGAN.

Fig. 3 Mosaic of mid-axial slices of (a) real and (b) DCGAN generated synthetic BM region
volumes.
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3.2.2 Data preprocessing

All datasets were resampled to have isotropic (1 mm × 1 mm × 1 mm) voxels. The voxel values
were normalized to [0, 1] range, where the maximum and minimum intensity voxels for each
dataset had the normalized values of 1 and 0, respectively.

3.2.3 Parameters

The DCGAN type ensemble member candidates were trained where (1) binary-cross entropy
type loss was used for the discriminator and generator networks (as in Ref. 40), (2) Adam
algorithm43 was used for the network optimization, (3) learning rates for the discriminator and
generator networks were set as 0.00005 and 0.0003, respectively, (4) the dropout rate of the
discriminator network was 0.15, (5) leaky ReLU units’ alpha values were 0.1 for both of the
networks, and (6) 1500 training epochs were executed with batches each consisting of eight pairs
of positive and negative samples.

For a given member candidate, to compute the mean and covariance estimates of its synthetic
data ðmg;CgÞ, 2000 synthetic samples were generated by its generator in every 50 epochs of the
training, whereas the real data statistics ðmr; CrÞ were computed using the original data prior to
the training. The member candidates that generated synthetic data having SFD of less than ω ¼
0.04 were added into the ensemble (see Fig. 4).

The acceptable performance criteria for the BM detection algorithm, trained using the syn-
thetic data generated by the ensemble, was set as 10.12 false positives at 90% BM-detection
sensitivity: acceptable performance gap (ε) was an additional false-positive with respect to the
baseline performance ϑo.

Identification of a patient based on a BM region volume is not likely as the area spans a very
limited area. However, to have a glance of the visual resemblance test, the generated sharable
samples were allowed to have MI with the original data less than φ ¼ 0.5, where the transfor-
mation domain ðTÞ kept empty due to the simplicity of the target data.

3.3 Results

3.3.1 Validation study

The performance of the BM detection algorithm using the synthetic data, generated by the pro-
posed framework, was validated using a fivefold CV: 217 datasets acquired from 158 patients
were patientwise divided into fivefolds of 31, 31, 32, 32, and 32 patients, respectively. For each
fold, (1) the other four folds were used for generating the constrained GAN ensemble (cGANe),
(2) synthetic data produced by the ensemble was used for training the BM detection algorithm,
and (3) and the original data in the selected fold were used for the testing. The average number
of false positives (AFP) with respect to the system’s detection sensitivity is represented for the
ensembles containing 1, 5, 10, 20, 30, and 40 DCGAN models (i.e., cGANe1, cGANe5,
cGANe10, cGANe20, cGANe30, and cGANe40) in Fig. 5. The information is summarized for
the 75%, 80%, 85%, and 90% detection sensitivities in Table 1.

The visual resemblance test eliminated 5.7% of the 2000 synthetic samples. In Fig. 6, some
examples for these eliminated synthetic images and the corresponding original images are shown.

The proposed solution was implemented using the Python programming language (v3.6.8).
The neural network implementations were performed using Keras library (v2.1.6-tf) with
TensorFlow (v1.12.0) backend. The training of each DCGAN was done in ∼1.25 h, where a
DCGAN satisfying the SFD constraint was generated in ∼2.15 h on average. Thus, growing
a given cGANe with 10 additional DCGANs took ∼21.5 h on average. The training of the val-
idation model for each fold took ∼3.5 h. The network training was performed using four parallel
processing NVIDIA 1080ti graphics cards, having 11 GB RAM each.

3.3.2 Ablation study: unconstrained ensembles

To quantify the impact SFD-based ensemble growth constraint, we performed the validation
study for ensembles that grew without it (GANe); each newly trained DCGAN was added into
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the ensemble without verifying their output’s statistical distribution via SFD. The summary for
the results of this experiment is provided in Table 2.

3.3.3 Visualizing the ensemble information coverage

As described previously, a potential problem with the usage of a single GAN is the partial rep-
resentation of the real data PDF. The issue and the validity of our solution was further illustrated
by performing a low dimensional data embedding analysis (see Fig. 7). The real data (i.e., all 932
BMs) and the matching number of cGANe generated synthetic samples were visualized via 2D
embeddings, generated by (1) reducing the flattened 4096-dimensional volumetric data into 80-
dimensional data using principal component analysis,44 explaining ∼84.5% of the data variance,
and (2) embedding these 80-dimensional representations into 2D using t-distributed stochastic
neighbor embedding (t-SNE).45 (The mapping of very high dimensional data into highly rep-
resentative lower-dimensional data prior to t-SNE was suggested in Ref. 45.) As shown in the
cGANe1 plot, the usage of a single constrained DCGAN caused the lower-dimensional map-
pings to accumulate in regions that do not align well with the original data. As DCGANs (among
various other GAN formulations) are susceptible to full or partial mode-collapse,46 this was an
expected outcome. The misrepresentation declined with the cGANe scale, where the cGAN

Fig. 4 SFD for the DCGAN validation.
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Fig. 5 AFP in relation to the detection sensitivity for the (a) cGANe1, (b) cGANe5, (c) cGANe10,
(d) cGANe20, (e) cGANe30, (f) cGANe40, and (g) baseline. (h) The average curves for the base-
line and cGANe setups.
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(e ≥ 10) plots have better real and synthetic data mixtures; explaining the improved validation
model performances of cGANe settings with higher numbers of components.

3.3.4 Data scale and computational cost relationship

The computational cost of the introduced framework depends on various factors, including the
GAN type, validation model, and convergence of an ensemble. We performed a hypothetical
study to estimate the relationship between the target image resolution and the cGANe compu-
tation time: (1) DCGAN training times for 32 × 32 × 32 and 64 × 64 × 64 volumes were com-
puted by upscaling the network shown in Fig. 2 with the same contraction/expansion strategy
and using the upscaled version of the original data, and (2) SFD constraint satisfaction rate and
validation model computation times were assumed to be constant values inferred from the origi-
nal study (see Fig. 8). Based on these, we expect that the training time for a cGANe ensemble
with 10 members is ∼115 h for 32 × 32 × 32 volumes, and it is ∼523 h for 64 × 64 × 64 vol-
umes, respectively (using the same hardware specified in the Sec. 3.3.1). Note that for these

Table 1 AFP versus sensitivity.

Sensitivity (%) Baseline cGANe1 cGANe5 cGANe10 cGANe20 cGANe30 cGANe40

75 1.90 — 16.02 10.60 6.62 4.26 3.19

80 2.96 — — 12.82 9.56 6.24 4.32

85 5.85 — — — 13.42 8.26 6.22

90 9.12 — — — — 12.47 9.53

Fig. 6 (a) Mid-axial slices of some originals and synthetic samples that were eliminated due to
high resemblance to those (b).

Table 2 AFP versus sensitivity for unconstrained ensembles.

Sensitivity (%) Baseline GANe1 GANe5 GANe10 GANe20 GANe30 GANe40

75 1.90 — — — 14.16 8.97 8.04

80 2.96 — — — — 10.22 9.45

85 5.85 — — — — 13.81 11.66

90 9.12 — — — — — 16.03
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higher image resolutions, DCGAN might lead to imaging artifacts and lower sample variety47

(causing larger-scale ensembles); hence, a different GAN formulation might be preferable.

4 Discussion and Conclusion

The validation study showed that the synthetic data generated by a constrained ensemble of 40
DCGANs (cGANe40) can be used for training a BM-detection model successfully. The model
trained using the dataset generated by cGANe40 produced 9.53 false-positives for 90% detection
sensitivity. The result is comparable with the 9.12 false-positives for the same sensitivity level

Fig. 8 Estimated DCGAN, SFD valid DCGAN, and validation model generation times for different
resolutions.

Fig. 7 t-SNE representations for real (black) and cGANe generated (orange) data samples.
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produced using the original data for the model training (see Fig. 5 and Table 1). Accordingly, the
ensemble can be utilized for producing positive synthetic data samples for client sites intending
to (1) reproduce the results with the same BM-detection model or (2) use it for performing
another research with this specific data type (i.e., volumetric BM region data for T1-weighted
contrast-enhanced MRI examinations).

The ablation study was performed to present the impact of SFD-based ensemble member
constraint on final performance. As shown in Table 2, the elimination of this constraint led
to a BM-detection performance that is significantly worse than the original performance; using
the data produced by an unconstrained ensemble with 40 members (GANe40) caused ∼16 false-
positives for 90% detection sensitivity.

The visual resemblance test was shown to eliminate synthetic samples (see Fig. 6) that
closely resemble the originals. However, the technique needs to be further validated in a future
study for modalities in which the patient could be identified from the medical images (i.e., full
head CT). This might also require the geometric transformation component of Eq. (6) (i.e., Tð:Þ)
to be adapted for nonrigid transformations. The visual resemblance test may also be reformulated
to utilize (1) image feature-based comparisons (i.e., computed via volumetric interest point
detectors48) or (2) a dedicated image similarity detection DNN such as Siamese networks.49

A future study may investigate the integration of these alternative approaches into the given
framework and provide comparative analyses.

The visualization of the low dimensional data embeddings provided a glimpse of enhanced
information mode coverage with the ensemble scaling, whereas the study primarily focused on
the representativeness of the synthetic data concerning the reproduction of research results. The
representativeness is correlated with the coverage of parts of the information domain in this
context [e.g., synthetic data for BM should contain visually correct tumor(s), while the visual
correctness of surroundings may be less critical for a validation model to perform]. We aim to
analytically quantify the relationship between representatives and information-coverage in a
future study: various GAN formulations with the objective of information coverage (such as
Refs. 24 and 26) could be introduced into the framework, then the convergence rate for different
parametrizations could be visualized for a selected medical imaging study.

The framework currently holds various parameters (e.g., the GAN type, acceptable perfor-
mance gap, visual resemblance test threshold, etc.), which were set empirically for the given case
study. Future studies might benefit from the provided values as a starting point; yet, they need to
be determined for each synthetic data generation application.

As mentioned previously, GANs were used for data augmentation purposes in various medi-
cal imaging applications.12–16 The introduced approach may also be suitable for the data aug-
mentation tasks since it produces synthetic samples that are validated for their representativeness.
As an application example, the BM detection framework could be reformulated to use cGANe
produced-samples in addition to original data during its training stage; hence, replacing its origi-
nal data augmentation pipeline (consisting of random elastic deformation, gamma correction,
flip and rotation operations20) with the cGANe. Accordingly, we aim to investigate the data
augmentation aspects of cGANe approach in a future study.

The major limitation of the introduced framework is its computational efficiency. For the
given case study, a constrained ensemble grew with 10 additional members in ∼21.5 h; hence,
the cGANe40 computation took ∼86 h (for a single fold). After the completion of the con-
strained ensemble, the synthetic data then can be generated in magnitudes of thousands in a
few seconds (i.e., 2000 synthetic volumes are generated in ∼14 s). We also performed a hypo-
thetical study to estimate the computation times for higher scale models (Sec. 3.3.4). Different
framework setups (i.e., with different GAN formulation, validation model, etc.) are associated
with very different computational timeframes and needs.

The study introduced the constrained ensemble of GANs, formulated to generate synthetic
datasets that are research worthy and do not contain samples closely resembling the original data,
aiming to make them sharable. The solution provided technical novelties including the (1) objec-
tive oriented ensemble growth strategy, (2) SFD constraint for ensemble members, and (3) visual
resemblance metric. The case study presented the applicability of the proposed solution by gen-
erating BM region volumes, where replacing the original data with the synthetic ones during the
model training led to acceptable performance during the model testing.
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Medical image processing has evolved over the last decade in the direction of being heavily
data-driven.3 Accordingly, the amount of data utilized during the development is a determining
factor for the performances of deployed models. However, the sharing of medical data between
the institutions, and even between the departments of the same institution, is limited due to reg-
ulations and laws. The paper presented a framework to address this issue via synthetic medical
data, vetted to enable reproducible research results and ensure patient privacy. A redundant sup-
ply of such synthetic medical datasets, produced for a variety of modalities and medical con-
ditions, could potentially foster more collaboration among organizations and expedite scientific
discoveries in this field.
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