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Abstract

Purpose: Chest X-ray (CXR) use in pre-MRI safety screening, such as for lead-less implanted
electronic device (LLIED) recognition, is common. To assist CXR interpretation, we “pre-
deployed” an artificial intelligence (AI) model to assess (1) accuracies in LLIED-type (and
consequently safety-level) identification, (2) safety implications of LLIED nondetections or mis-
identifications, (3) infrastructural or workflow requirements, and (4) demands related to model
adaptation to real-world conditions.

Approach: A two-tier cascading methodology for LLIED detection/localization and identifi-
cation on a frontal CXR was applied to evaluate the performance of the original nine-class
AI model. With the unexpected early appearance of LLIED types during simulated real-world
trialing, retraining of a newer 12-class version preceded retrialing. A zero footprint (ZF) graphi-
cal user interface (GUI)/viewer with DICOM-based output was developed for inference-result
display and adjudication, supporting end-user engagement and model continuous learning
and/or modernization.

Results: During model testing or trialing using both the nine-class and 12-class models, robust
detection/localization was consistently 100%, with mAP 0.99 from fivefold cross-validation.
Safety-level categorization was high during both testing (AUC ≥ 0.98 and ≥0.99, respectively)
and trialing (accuracy 98% and 97%, respectively). LLIED-type identifications by the two
models during testing (1) were 98.9% and 99.5% overall correct and (2) consistently showed
AUC ≥ 0.92 (1.00 for 8/9 and 9/12 LLIED-types, respectively). Pre-deployment trialing of both
models demonstrated overall type-identification accuracies of 94.5% and 95%, respectively.
Of the small number of misidentifications, none involved MRI-stringently conditional or MRI-
unsafe types of LLIEDs. Optimized ZF GUI/viewer operations led to greater user-friendliness
for radiologist engagement.

Conclusions: Our LLIED-related AI methodology supports (1) 100% detection sensitivity,
(2) high identification (including MRI-safety) accuracy, and (3) future model deployment with
facilitated inference-result display and adjudication for ongoing model adaptation to future real-
world experiences.
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1 Introduction

1.1 Lead-Less Implanted Electronic Devices: Categories/Types
and Related MRI-Safety Issues

The significant incidence of lead-associated or generator pocket-related complications (e.g.,
infection) from the insertion of lead-dependent cardiac rhythm-management devices into the
chest1 helped inspire the development of lead/generator-free versions, facilitated by progress
with miniaturization, communications, and battery technologies.2 The outcome has been the
creation of much smaller lead-less implanted electronic devices (LLIEDs) capable of (1) cardiac
pacing or monitoring of (2) electrocardiographic activity; (3) cardiovascular physiology; (4) non-
cardiovascular chemistry (e.g., esophageal fluid pH3).2 Consequently, intrathoracic LLIED
placement has become commonplace to meet various clinical needs.

As with any lead-dependent predecessor, the recognition of an LLIED’s presence, location,
general category (e.g., pacing versus recording), and specific type (e.g., Micra™ versus Reveal
LINQ™, respectively) is critical. The awareness of these factors can influence patient safety,
LLIED function, clinical-support operations, and/or local environmental hazards. LLIED detec-
tion and identification are especially pertinent to the increasingly common electromagnetic and
radiofrequency exposures during magnetic resonance imaging (MRI) examinations,4 including
those being performed with systems functioning at increasing higher field strengths (e.g.,
7 Tesla).5

Although most LLIEDs are considered “MRI conditional” (by posing no known hazards in a
specified MRI environment with specified conditions of use),6 and despite some recent reports
suggesting complete MRI safety at conventional field strengths (e.g., 1.5 and 3 Tesla),7 it remains
imperative to acknowledge key facts. These include the following realities: (1) MRI conditional
does not mean MRI compatible or safe, especially considering ever-changing MRI technology
(e.g., increasing prevalence of 7-Tesla systems);5,8 (2) Not all MRI-conditional LLIEDs carry
equivalent potential risks, partly due to the coexistence of other implants;9 (3) Even when con-
sidered MRI conditional, MRI exposure may result in recordable patient-related effects from an
inserted LLIED or detectable alterations in LLIED function;7,10 (4) Some MRI-conditional
LLIEDs are considered more stringently conditional than others;11 (5) Different MRI-conditional
LLIEDs justify specific patient and/or LLIED assessment or preparation before and/or after,
as well as monitoring during, the MRI examination;6,12,13 (6) Some LLIEDs are considered
“MRI unsafe” (by posing a significant risk in all MRI environments).3,11,12,14

1.2 LLIEDs: Pre-MRI Screening

1.2.1 General pre-MRI screening procedures

Accordingly, at an initial patient visit for an MRI examination, knowledge of an LLIED
previously inserted at another institution is typically gained through direct interaction between
the scanning supervisors (i.e., physician or technologist) and the patient (hopefully, possessing
specific LLIED details). This is followed by manual entry of attained screening information
into the patient’s electronic medical record (EMR).6,12,13 On the other hand, if the LLIED was
intramurally placed, this information is likely gleaned by EMR review. Regardless, both forms
of data extraction and documentation have known deficiencies for safety screening,15 thereby
enabling an LLIED to remain inadequately recognized up to the time of (and possibly during)
MRI scanning, especially in stressful emergency or trauma situations.16,17 Compounding
LLIED-specific potential risks from MRI exposures are unpredictable causative factors related
to patient or scanning differences.4,6,9,12 Other scenarios where LLIED recognition is also impor-
tant include (1) External cardioversion (potential device malfunction and/or damage);
(2) Radiation therapy (potential device malfunction and/or damage); (3) Cremation (potential
device battery explosion).18,19

As mentioned, prerequisite patient and/or LLIED assessment or preparation (before,
during, or after an MRI examination) may differ even when LLIEDs are considered MRI
conditional. For example, when pertaining to an MRI-conditional lead-less pacemaker (LLP),
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the expectations typically include cardiologist-dependent (1) Pre-MRI evaluation of the patient
and/or LLIED (likely necessitating LLP-setting adjustment); (2) Direct patient monitoring
during MRI scanning; (3) Post-MRI evaluation of the patient and/or LLIED (with LLP resetting
to original state).6,12,13 These demands exceed those when an MRI-conditional lead-less
recorder (LLR) is involved, and precautions taken alone by the MRI technologist are deemed
adequate.6,12,13 Therefore, the failure to differentiate between these two common MRI-condi-
tional LLIED categories (i.e., “assessment-requiring” and “simple,” respectively) well before
initiating MRI scanning could either put a patient at undue risk or disrupt operations (e.g.,
incorrect pre-examination readiness of supporting services, such as cardiology).

1.2.2 Use of a chest X-ray in pre-MRI screening

A chest X-ray (CXR) is a standard component of pre-MRI safety screening (for LLIEDs or other
man-made objects in the chest).20–27 Such CXR-based screening assumes even greater impor-
tance when there is inadequate EMR documentation from lack of a prior visit and/or internal
misrecording.26–28 Unfortunately, any LLIED could be overlooked on a CXR due to their
mutually small sizes (subject to projection-related distortions), especially when accompanied
by (1) Suboptimal radiographic technique (e.g., under-penetration); (2) Patient-related factors
(e.g., motion-related blurring); (3) Obscuration by adjacent-internal or superimposed-external
radio-opaque or electronic materials. In addition, LLIED categories and/or types might be con-
fused with each other by the interpreting radiologist because of (1) LLIEDs having remarkably
similar appearances and positions on a frontal CXR (typically the only view acquired in emer-
gency/trauma department or intensive care unit settings, without a lateral view, revealing LLIED
intrathoracic location deep within the right ventricle for an LLP versus subcutaneous within the
anterior chest wall for an LLR); (2) General lack of familiarity by a radiologist with LLIED-
specific characteristics (especially retained legacy systems or recently introduced devices).23,28

These fundamental issues are especially germane to the less familiar, infrequently used, much
smaller, and more “stringently” MRI-conditional LLIEDs [e.g., pulmonary artery pressure
monitor (PAPM) for heart failure20,24,29] and MRI-“unsafe” LLIEDs [e.g., esophageal reflux
capsule (ERC) for pH-monitoring3,11,12,14], which can easily go unnoticed.

1.3 Implanted Electronic Device Recognition on CXR: Potential Role
for Artificial Intelligence

1.3.1 Artificial intelligence: lead-dependent electronic device recognition
on CXR

Other investigators have realized the potential value of CXR-reliant recognition of standard
cardiac rhythm-management devices (including lead-dependent pacemakers and cardioverter-
defibrillators), for which a comprehensive and detailed manual stepwise visual flowchart
CARDIA-X system was initially proposed.30 More recently, an Artificial Intelligence (AI)-based
system for CXR identification of lead-dependent devices (which routinely display radiographic
text-based identifiers31) recognized the device manufacturer and type with 99.6% and 96.4%
accuracy, respectively.32 However, the same AI model demonstrated a lower manufacturer-
identification accuracy of 71% compared to another AI model running on either a mobile phone
application or web platform33 (accuracy 89% and 73%, respectively), thereby approximating
the nonAI-based CARDIA-X performance (i.e., accuracy 85%).34 None of the aforementioned
studies or a very recently reported study of only lead-dependent pacemaker detection,35 focused
on the recognition of the continuously evolving array of much-smaller modern LLIEDs (which
do not display radiographic text-based identifiers).

1.3.2 AI: opportunity for assisting radiologists in CXR-based LLIED recognition

Thus, AI-based assistance to radiologists in the prompt and confident frontal-CXR detection and
localization of any general category of LLIED, and then the identification of its specific type,
prior to a scheduled or urgent MRI could have significant safety and operational benefits.
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In response, our group previously developed a potentially high-performing cascading AI model,
described technically elsewhere.36

Unlike the previous basic-technology phase of our research,36 this work focused on the pre-
deployment assessment of our combined LLIED-detection and identification AI model for its
current readiness, as well as the operational prerequisites to potentially assisting radiologists
(reliably, effectively, and efficiently) once truly deployed in real-world clinical practice.37,38

The evaluations included: (1) Accuracies in the identification of each specific LLIED-type,
and consequently the related MRI-safety level, based on experiences during both model develop-
ment and simulated trialing;39,40 (2) Clinical MRI-safety implications of observed LLIED
nondetections or misidentifications;39,40 (3) Anticipated (or unanticipated) infrastructure-
architectural and/or workflow requirements for productive real-world clinical deployment;41–43

(4) Expectations and challenges related to ongoing model adaptation to changing real-world
conditions.44–46

2 Methods

2.1 Original AI Model for LLIED Recognition

2.1.1 Ground-truth LLIED-type labeling of CXR images

As previously detailed,36 Institutional Review Board-approved retrospective data-mining
(spanning: March 1993 to February 2021) allowed the organization-wide extraction of digital
CXR examinations (i.e., “AI model development population”) representing a wide range of
LLIEDs supporting the development of an AI methodology for device detection followed by
identification.36 The specific identities of the LLIED types represented, and their associated
clinical implications, were not profiled in the previous nonclinical technical note.36

Serving as project “ground-truth” expert, a fellowship-trained cardiothoracic radiologist with
37 years of experience used a local graphical user interface (GUI)36,47 to manually delineate
the specific LLIED type(s) demonstrated on a CXR image from the AI model development
population.36 The frontal view (i.e., Postero–Anterior aka P–A, or Antero–Posterior aka A–P)
from each CXR examination was correspondingly labeled using the interactive region-of-interest
(ROI) capabilities of the GUI,36 with circular markers applied to derive square ROIs for input
into model development (Fig. 1).36,47

The LLIED categories, including ERC (one type), PAPM (one type), LLP (two types), and
LLR (five types), denoted decreasing levels of MRI-related risk and/or lessening requirements
for patient or LLIED evaluation (i.e., unsafe, stringently conditional, assessment-requiring con-
ditional, or simple conditional, respectively) (Table 1 and Fig. 2).

During ROI labeling of instances of the original nine LLIED types on CXR images, a basic
quality grade reflecting general conspicuity and detail clarity was applied as follows:
(1) Unequivocally diagnostic supporting IDentification (“ID” in 76%); (2) Potentially nonrec-
ognizable (“NR” in 12%) for detection or ID; (3) ID with superimposed or abutting materials, or
incomplete inclusion within view margins, causing over-lapping (“OL” in 10%); (4) Combined
(“NR and OL” in 2%).36

2.1.2 LLIED-type recognition by original LLIED Model

To optimize data use from the AI model development population during training, validation, and
testing of the nine-class “original LLIED model,” conventional approaches to data distribution,
expansion, and augmentation (including LLIED-specific inclusion of labeled diagnostic lateral
views: Table 2) were employed.36

As previously detailed,36 a two-tier system underlying the original LLIED model for
LLIED recognition was used: (1) First, to emphasize the detection of device presence and
location; (2) Second, to support device-type identification, if detected and then classifiable.36

Ultimately, this prompted the creation of a cascading neural network methodology as follows
(Fig. 3).
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Tier 1: LLIED detection. For the detection with localization of any LLIED-related ROIs in
the AI model development population, a faster region-based convolutional neural network
(R-CNN) was used.36 Inherent to this method was the output of the inference results as generated
bounding boxes (GBBs).36

Promoting a prerequisite to detect all LLIEDs and miss none, a probability-threshold
reduction (i.e., to 0.00002) was needed to overcome suboptimal image quality and achieve
100% detection sensitivity in the validation dataset.36 The targeted detection sensitivity of
100% (i.e., recall value = 1.00) was maintained in testing, during which: (1) a true positive (TP)
inference result was recorded when a GBB and a ground-truth LLIED-related ROI overlapped
with intersection-over-union ðIoUÞ ≥ 0.5; (2) a false positive (FP) resulted from a GBB failing to
overlap at IoU ≥ 0.5; (3) a false negative (FN) resulted from a failure to create any GBB.36

Fig. 1 LLIED-type labeling. Using ROI-annotation capabilities of the GUI, examples of the nine
LLIED types represented during the development of the original model are shown on frontal
views. The types are arranged in order of decreasing levels of MRI-related risk and/or lessening
requirements for patient or LLIED assessment (e.g., cardiology pre-, intra-, and post- MRI evalu-
ation) as follows: (a) Unsafe ERC (Bravo™ Reflux Capsule); (b) Stringently Conditional PAPM
(CardioMEMS™ HF); (c) Assessment-requiring conditional LLPs (Nanostim™* and Micra™);
(d) Simple conditional LLR (CONFIRM™*); (e) Simple conditional LLRs (Reveal™ XT* and
Reveal LINQ™); (f) Simple conditional LLR (CONFIRM Rx™); (g) Simple conditional LLR
(BioMonitor2-AF). (* = Legacy LLIED no longer being implanted but possibly retained).
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Tier 2: LLIED identification—specific-type and related MRI-safety level. After
theoretically achieving 100% device detection sensitivity in tier 1, a supposedly high generic
device identification accuracy in tier 2 was previously described.36 With the combined goals
of (1) Reducing FP results from tier 1; (2) Supporting maximal identification of specific
LLIED types, all postfiltered (size/shape-based) detection-related GBBs (i.e., those overlapping
with ground-truth ROIs at IoU ≥ 0.5 in tier 1) were classified using a multiclass CNN.36 The
network was then refined further using ground-truth ROIs initially for the nine-class classifier
(per specific LLIED type); for the determination of correct LLIED-type identification, corre-
spondence was confirmed by the GBB label resulting in the greatest IoU with a ground-truth
LLIED-related ROI.36 Unlike the prior technical note,36 the LLIED identities and CXR appear-
ances represented by the original nine classes, as well as newer classes, are presented in this
report.

Table 1 LLIED categories/types and MRI-safety levels represented.

LLIED EMA/FDA MRI safety48–52

Category Type Approval 1.5 Tesla 3.0 Tesla

Found in AI model development population or methodology trial population

ERC 1 = Bravo™ Reflux Capsulea December 2010 Unsafe Unsafe

PAPM 1 = CardioMEMS™ HFb October 2006 Conditional** Conditional**

LLP 1 = Nanostim™b,c October 2013 Conditional* Conditional*

2 = Micra™ (M# MC1 VR01 or AVR1)a April 2016 Conditional* Conditional*

LLR 1 = Reveal™ XT (M# 9529)a,c November 2007 Conditional Conditional

2 = CONFIRM™ (DM2102)b,c August 2008 Conditional INA

3 = Reveal LINQ™ (M# LNQ11)a February 2014 Conditional Conditional

4 = BioMonitor2-AFd April 2016 Conditional Conditional

5 = CONFIRM Rx™ (DM3500)b September 2017 Conditional Conditional

First presentation in methodology trial population

LLR BioMonitor IIImd April 2020 Conditional Conditional

LUX-Dx™ (M# M301)e June 2020 Conditional Conditional

LINQ™ IIa July 2020 Conditional Conditional

EMA = European Medicines Agency.
ERC = Esophageal Reflux Capsule.
FDA = United States Food and Drug Agency.
LLIED = Lead-less implanted electronic device.
LLP = Lead-less pacemaker.
LLR = Lead-less recorder.
PAPM = Pulmonary artery pressure monitor.
Conditional = Simple conditional (safe if following specific recommendations or guidelines per manufacturer).
Conditional* = Assessment-requiring conditional (like simple but prerequisite patient and/or device assessment
or preparation).
Conditional** = Stringently conditional (safe only if imaged under strict and highly specific technical
restrictions).
Unsafe = Unsafe in any MRI environment.
INA = Information not available.
aMedtronic (Minneapolis, Minnesota).
bAbbott/St. Jude Medical (Little Canada, Minnesota).
cLegacy LLIED no longer being implanted but potentially retained.
dBiotronik SE & Co. (Berlin, Germany).
eBoston Scientific Corporation (Marlborough, Massachusetts).
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However, due to analytical restrictions from inadequate numbers of unique-patient
instances for some LLIED types (typically legacy or newer types),63 a fundamental assess-
ment of tier-2 accuracy in identifying MRI-safety level per LLIED category (i.e., unsafe,
stringently conditional, assessment-requiring conditional, or simple conditional) was also
performed.

2.2 Evaluation and Support of the Evolving LLIED Model for Device
Recognition

Initially, during our “pre-deployment” work, three anticipated evaluations of the performance of
the original LLIED model in LLIED recognition were completed within two populations
(Table 3). However, three essential technical developments designed to overcome fundamental
deployment workflow challenges facilitated both unanticipated early model evolution and
a “limited-deployment” opportunity for repeat performance evaluation of an updated model in
two other populations.

The aforementioned fundamental assessment of tier-2 accuracy in identifying MRI-safety
level was facilitated by pooling testing ROI data between LLIED sets with matching safety
level (Fig. 4); the resulting four combined categories (per safety level) underwent accuracy
assessment.

Fig. 2 LLIED categories/types represented. LLIED-types in AI model development population
(Above) and new types appearing in methodology trial population.
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Table 2 Criteria for LLIED lateral view exclusion from use in model development.

LLIED

Exclusion criteriaType Entity

ERC 1 All included

PAPM 1 All included

LLP 1 Excessive foreshortening preventing:

• Simultaneous visualization of fixation helix and distal battery chevron53,54 (and)

• Appearance of body length > three times diameter

2 Excessive foreshortening preventing:

• Simultaneous visualization of cathode/tine complex and electronics-battery transition
zone (∼0.5 body length)55 (and)

• Appearance of body length > two times diameter

LLR 1 Excessive foreshortening preventing:

• Simultaneous visualization of the battery-electronics transition zone (∼0.4 body length)
and electronics-antenna transition in rectangle-shaped body56–58 (and)

Lack of en-face presentation facilitating:

• Visualization of rectangular distal electrode56–58

2 Excessive foreshortening preventing:

• Simultaneous visualization of the battery-electronics transition zone (∼0.4 body length)
and electronics-antenna transition in slightly teardrop-shaped body56,57 (and)

Lack of en-face presentation facilitating:

• Visualization of triangular distal electrode56,57

3 Excessive foreshortening preventing:

• Simultaneous visualization of the battery-electronics transition zone (∼0.3 distance) and
electronics-antenna transition in rectangle-shaped body58,59 (and)

Lack of en-face presentation facilitating either:

• Visualization of three-dot pattern aligned along electronics board and antenna base58,59

(or) Visualization of corrugated-appearing medradio antennae supporting cellular
communication58,59

4 Excessive foreshortening preventing:

• Simultaneous visualization of the battery-electronic transition zone (∼0.4 body length)
and faintly radio-opaque elongated antenna with distal electrode cap60,61 (and)

Lack of en-face presentation facilitating:

• Visualization of two small projections from body at base of antenna60,61

5 Excessive foreshortening preventing:

• Simultaneous visualization of battery-electronics transition zone (∼0.5 body length) and
electronics-antenna transition in rectangle-shaped body60,62 (and)

Lack of en-face presentation facilitating either:

• Visualization of two projections to triangular antenna supporting Bluetooth
communication (or) visualization of plaid-like pattern in battery60,62
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2.2.1 Performance evaluations of original LLIED model for LLIED recognition

Cross-validation assessment. To further assess the pre-deployment durability of the
original LLIED model,36 a fivefold cross-validation64 was executed on tier 1 for LLIED detection
in the AI model development population (Table 3). However, corresponding cross-validation was

Fig. 3 Two-tier cascading methodology and data flow for generic LLIED detection and classifi-
cation36 (GBB, generated bounding box; IoU, intersection-over-union).

Table 3 LLIED model performance evaluations and essential technical developments.

Original LLIED model: pre-deployment LLIED-recognition performance evaluations

• Cross-validation assessmenta

• Safety-level and specific-type identification accuracies during model testinga

• Basic pre-deployment trialingb

Essential technical developments supporting real-world model deployment and adaptation

• Selection/development of viewer for AI model inference-result display and adjudication

• Applying data standards, supporting interoperability, and enhancing user experience

• Preparation for ongoing adaptation of LLIED-detection and identification AI model

Updated LLIED model: limited-deployment LLIED-recognition performance evaluations

• Cross-validation assessmentc

• Safety-level and specific-type identification accuracies during updated model testingc

• Limited-deployment simulated real-world trialingd

Patient population used:
aAI model development population.
bMethodology trial population.
cAI model update population.
dUpdated methodology trial population.
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not completed on tier 2 for either safety-level or specific-type identification, due to the recog-
nized limitation of the approach when there are inadequate numbers of unique-patient instances
(Fig. 4),63 as pertained to some types (especially legacy) in the AI model development population
and expected with the initial appearances of new types in the future. For example, if there are
very few (<5) patients representing an LLIED type, it is not feasible to perform cross-validation
and report statistically significant and valuable results.

Safety-level and specific-type identification accuracies during model testing.
Unlike the previous basic-technology report,36 the specific identities, photographic appearances,
CXR delineations, and MRI-safety levels of the original nine classes of LLIEDs were tabulated
and described in this work for future clinical application of the original LLIED model or newer
versions (Table 1 and Fig. 2). The original LLIED model36 was initially assessed for its accuracy
in identifying both MRI-safety levels (i.e., unsafe, stringently conditional, assessment-requiring
conditional, or simple conditional) and specific type during model testing within AI model
development population (Table 3). In addition, the clinical MRI-safety implications of any
model-related nondetections or misidentifications of LLIEDs were reviewed.

Basic pre-deployment trialing. To help imitate a basic real-world trialing of the original
LLIED model,36 a “methodology trial population” of 150 new randomly selected patients (not
previously represented in the AI model development population) was compiled after additional
data-mining (spanning: March 2021 to June 2021) (Table 3). From the methodology trial pop-
ulation: (1) The most recent frontal CXR image demonstrating any LLIED was collected from
100 LLIED patients; (2) One frontal CXR image was collected from 50 nonLLIED patients. The
resulting 150 unannotated images (i.e., without prior ROI delineation by the ground-truth expert)
underwent AI processing by our two-tier cascading original LLIED model for both LLIED
detection and then LLIED-type identification via the automatic GBB-based display of AI infer-
ence results (returned in <1 s) using the aforementioned GUI.

After the AI-model processing, as previously described, the 100 unannotated LLIED-dem-
onstrating frontal CXR images were manually labeled by the ground-truth expert using the GUI
annotation capabilities36,47 while blinded to the previous model-generated inference results.
Accordingly, 101 ROI labels (one LLIED case with two devices) were applied to indicate:
LLIED presence/location, specific LLIED type, and ROI-quality grade (ID in 71 or 70%;
NR in 15 or 15%; OL in 13 or 13%; NR and OL in 2 or 2%). Inference-result corroboration
(again based on IoU ≥ 0.5 and matching of LLIED labels between the model-derived GBB and
the applied ROI)36 was then assessed.

Fig. 4 Pooling of testing ROI data of LLIED sets with matching MRI safety supported a funda-
mental four-category assessment of tier-2 safety-level identification accuracy. Pooling ultimately
had no effect on either the stringently conditional or unsafe categories, because each was
represented by a single specific LLIED type (Cond, conditional; LLP, lead-less pacemaker;
LLR, lead-less recorder; Pop, population; Tr+V, training and validation; Test = testing).
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2.2.2 Essential technical developments supporting real-world model
deployment and adaptation

A component-based simulation of deployment of our methodology for AI-based LLIED detec-
tion and identification on CXR was considered consistent with several recent FDA-endorsed
actions.44 Hence, we pursued the following opportunities to facilitate the utilization of verified
AI model output by the CXR-interpreting radiologist (Table 3; Appendix A).40–44,65,66

Selection/development of viewer for AI model inference-result display and adju-
dication. Our deployment simulation initially relied on the previously described GUI36,47 for
model inference-result display to the end-user [Table 3]. A zero-footprint (ZF) viewing platform
(aka “ZF GUI/viewer”) has since been designed to support all phases of imaging-AI model
development and evolution in a user-interactive fashion (Appendix B with Fig. 5).43,66,67

Fig. 5 Development of viewer for model inference-result display and adjudication. As shown
above, the developed ZF GUI/viewer: (1) Has basic functionalities under two main categories
[(a) Server-level connectivity; (b) web-based user interface]; (2) Stores information about all image
annotations, AI-model inferences, and user responses in an SQL server backend database;
(3) Caches all images to be displayed to users in an Orthanc-based DICOM server; (4) Can
be invoked from the PACS viewer via URLs passing image-specific parameters (e.g., accession
numbers); (5) Can be summoned by clinical users via EMR systems by medical record numbers or
accession numbers; (6) Facilitates user interactions, including single-sign-on logins enabled by
authorization servers; (7) Supports FHIR interconnectivity (e.g., for placing order messages
invoking model inference-result display on specific images); (8) Can absorb traditional HL7 order
messages. As represented below, the ZF GUI/viewer is designed to be potentially integrated into
the clinical PACS-support infrastructure.
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Applying data standards, supporting interoperability, and enhancing user expe-
rience. Whether or not inference results from an AI model provide helpful insights, it is
crucial that end-users prospectively adjudicate (i.e., accept, modify, or reject) the results on
a case-by-case basis to reinforce the essential adaptation of the AI model to changing real-world
conditions.40,41,44,45,67,68 To that end, DICOM-structured reports (DICOM-SR) were recruited in
the ZF GUI/viewer primarily for assigning spatial coordinates and simple shapes linked to coded
text labels, all highly applicable to this work (Table 3; Appendix C).42,43,69–71

In addition, based on the practical experience of the ground-truth expert with the operations
of the ZF GUI/viewer to date, noncontributing inference-display redundancy and complexity due
to multiple overlapping identically labeled GBBs were reduced (Appendix C).

Preparation for Ongoing Adaptation of LLIED-Detection and Identification AI
Model. A note about the basic pre-deployment trialing in the methodology trial population
was that three new LLIED types (all LLRs) (Table 1 and Fig. 2) (not previously represented in
the AI model development population and, consequently, not signified by classes in original
LLIED model) were discovered. This unanticipated early prereal-world challenge created
immediate demands to avoid the associated “concept drift”45,46 and to facilitate model
adaptation65–68 prior to a true real-world deployment (Table 3). Our methodologic response was
as follows.

With the need to supplement the number of cases of the three new LLIED types, as well as
any of the original nine LLIED types, which were initially sparsely represented in the AI model
development population, sequential patients with LLIED-demonstrating frontal CXRs accrued
after the methodology trial population (i.e., July 2021 to February 2022) were inspected for
additional examples.

These needed additional LLIED cases were annotated, as previously described. Their anno-
tations were added, along with the corresponding LLIED annotations from the methodology
trial population, to the already annotated CXR data from the AI model development population.
As a result, a new and larger “AI model update population” was created to strengthen repeat
training, validation, and testing of a new 12-class “updated LLIED model.” To that end, the
same two-tier methodology was employed.36

2.2.3 Performance evaluations of updated LLIED model for LLIED recognition

Performance results from the updated LLIED model were analyzed (Table 3), as previously
described, including the following.

Cross-validation assessment. To assess durability of the updated LLIED model, a five-
fold cross-validation63 was again executed on tier 1 for LLIED detection in the AI model update
population (Table 3). However, as with the original LLIED model, lack of benefit from ROI
pooling and significant data imbalance persisted, with some no-longer-implanted legacy LLIED
types still represented by very small patient subsets (Fig. 4). Thus, meaningful cross-validation
assessment of tier 2 accuracy in the identification of LLIED MRI-safety level and specific type
could not be adequately evaluated.

Safety-level and specific-type identification accuracies during updated model
testing. The specific identities, photographic appearances, CXR delineations, and MRI-safety
levels of the three new classes, along with the original nine classes, of LLIEDs were tabulated
(Table 1 and Fig. 2). The identification accuracy both per MRI-safety level (i.e., unsafe, stringently
conditional, assessment-requiring conditional, or simple conditional) and per specific LLIED type,
was re-evaluated in the AI model update population (Table 3). Again, the clinical MRI-safety
implications of any model-related nondetections or misidentifications of LLIEDs were reviewed.

Limited-deployment simulated real-world trialing. To ensure maintenance of basic
functionality of the updated two-tier cascading model with tier-1 LLIED detection and tier-2
LLIED identification, a limited-deployment (utilizing the ZF GUI/viewer functioning in our test
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clinical environment parallel with our routine workflow) allowed additional simulated real-world
trialing (Table 3).

To mirror a real-world trialing of the updated LLIED model more closely, a subsequent
“updated methodology trial population” representing a recent sequential series (spanning:
February 2022 to June 2022) of 100 new LLIED-demonstrating frontal CXRs (not represented
in prior described study populations) was analyzed, regardless of the specific LLIED type rep-
resented or the image quality demonstrated. In each case, simultaneously with the routine clinical
CXR interpretation by the ground-truth expert, the frontal CXR suggesting the presence of an
LLIED was processed prospectively within the parallel ZF GUI/viewer test environment using
the 12-class updated LLIED model; the inference results were immediately expert-adjudicated
for the presence/location (versus absence), as well as the type, of LLIED inferred. Concurrently
interpreted clinical cases in which an LLIED was excluded (with or without inference-result
adjudication against false-positive GBBs) were not included in the “updated methodology trial
population.”

The compiled adjudication results were used to assess LLIED-identification accuracy by
the 12-class updated LLIED model in the updated methodology trial population prior to true
real-world deployment of our updated model and infrastructure architecture.

2.3 General Support of Methods

2.3.1 AI technical infrastructure

All AI-model computations utilized several secure on-site graphics processing unit (GPU)-
dependent systems. For training, validation, and testing of our AI models, an eight-GPU system
[DGX A100 from Nvidia (Santa Clara, California)] was employed.

2.3.2 Statistical analysis

As part of the standard analysis of testing results related to general LLIED detection in tier 1,
precision–recall curves were plotted to reflect the basic comparison between the AI model output
and ground-truth expert determinations.36,72 Tier-2 assessment of the discrimination performance
of the multiclass AI model for LLIED-type identification used the area under the receiver
operating characteristic curve (AUC ROC) methodology.36,73

3 Results

3.1 Performance Evaluations of Original LLIED Model for LLIED Recognition

3.1.1 Cross-validation assessment

As previously reported (without disclosure of LLIED identities),36 tier 1 of the original LLIED
model achieved the required 100% LLIED-detection sensitivity during testing.

In this work, during fivefold cross-validation, the mean average precision (mAP) was found
to be 0.99 (Fig. 6), indicating the durability of the original LLIED model for LLIED detection
and localization.

However, as previously mentioned, meaningful tier 2 cross-validation assessment of iden-
tification accuracies was precluded.

3.1.2 Safety-level and specific-type identification accuracies during model
testing

Also as previously described,36 tier 2 of the original LLIED model reached high generic per-
formance levels for LLIED classification. Of those classified as LLIED types, the identification
assignments were overall correct at 98.9% during model testing in the AI model development
population.36
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In this work, AUCs (rounded to nearest 1/100th) for identification of MRI-safety level
category (i.e., unsafe, stringently conditional, assessment-requiring conditional, or simple condi-
tional) consistently matched or exceeded 0.98, accompanied by high sensitivities (≥99%) and
specificities (≥90%) (Table 4).

Identification accuracies for the original nine specific LLIED types were also high with AUC
1.00 for eight types and 0.92 for one LLR type (Table 8).

3.1.3 Predeployent trialing

Based on postinference ground-truth judgments, the results of the imitated basic real-world
trialing experience in the 150 unannotated frontal CXRs from the methodology trial population
were strong. They demonstrated the following: (1) maintained detection sensitivity of 100% at
the temporary cost of increased GBBs (total 682) from tier-1 processing, with most FP GBBs
immediately eliminated transparently by tier-2 processing (i.e., 446 of 682 GBBs excluded)
and then the remaining via ground-truth adjudication of inference results (i.e., 135 displayed
FP GBBs disqualified by end-user); (2) Ongoing high specific-type identification accuracy at
94.6% (87 of 92 LLIEDs) if preestablished corresponding classes were present at the time of
tier-2 processing of the original LLIED model (Fig. 7).

Of the 101 LLIEDs represented in the methodology trial population, most with corre-
sponding classes within the original LLIED model were correctly identified per safety-level
category, with a high overall accuracy of 98% (99 of 100, with sensitivities, ≥95% and spec-
ificities ≥90%) (Table 5). Specific LLIED types were also identified with high accuracy
(Table 9).

Due to the 100% detection sensitivity achieved by tier 1 of the original LLIED model, no
LLIEDs went undetected in the just-described experiences related to either the AI model devel-
opment population or methodology trial population. However, of the cases misidentified when
there were corresponding classes (10/878 = 1.1% of LLIED-related ROIs in AI model develop-
ment population and 5/101 = 5.0% of LLIED-demonstrating frontal CXRs), the majority [11 of
15 = 73%, representing 8/10 cases and 3/5 cases, respectively (Tables 8 and 9)] could be attrib-
uted to suboptimal image-quality grades (cumulatively five NR and OL, four NR, and two OL)
(Fig. 8). However, in the methodology trial population, the overall majority of misidentified
cases (9 of 14 cases) were ascribed to prior absence of corresponding classes in the original
LLIED model for the three new LLR types; this necessitated adjudication correction of the infer-
ence results by the ground-truth expert (Fig. 9) for future model modernization including the
development of the needed new classes.

Fig. 6 Precision–recall curves for two-class detection (tier 1) by original LLIED model.
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3.2 Performance Evaluations of Updated LLIED Model for
LLIED Recognition

The AI model update population included new 351 frontal CXR examinations from 219 patients
not previously included in the original smaller AI model development population to support the
training, validation, and testing of the 12-class updated LLIED model. The previously reported
technologic methodology for model development was re-used.36

3.2.1 Cross-validation assessment

As with the original LLIED model, tier 1 of the updated LLIED model achieved 100% LLIED
detection sensitivity during testing. During fivefold cross-validation, the mAP of the updated
LLIED model was again 0.99, indicating its detection durability. However, as in the case of
the original LLIED model, due to significant data imbalance (with some no-longer-implanted

Fig. 7 Basic pre-deployment trialing in methodology trial population. (FP, False positive; GBB,
generated bounding box; IoU, intersection-over-union; PPV, positive predictive value).
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Fig. 9 ZF GUI/viewer demonstrating inference results (location and probabilities) for end-user
adjudication on three new LLIED types in methodology trial population. Previously, unclassified
LLR types (i.e., A and B = LUX-Dx™; C = LINQ™ II; D = BioMonitor III) were properly detected as
simple conditional LLRs by the original LLIED model, although misidentified as the most common
LLR (i.e., Reveal LINQ™) of equal MRI safety (i.e., simple conditional). A previously classified
assessment-requiring conditional LLP (i.e., C = Micra™) was both correctly detected and identified
at a high probability level, with an appropriate inference GBB label automatically assigned. The
user-friendly inference-adjudication capabilities of the ZF GUI/viewer allowed manual label reas-
signment of inference GBB labels from a drop-down list (e.g., Reveal LINQ™ in A relabeled as
LUX-Dx™ in B), or confirmation of correct automatic assignment (e.g., Micra™ in C). In addition,
an “other” option for labeling of false-negative or unanticipated future LLIEDs by the end-user is
also included. All end-user adjudications of inference results are recorded in the ZF GUI/viewer
backend database in support of model continuous learning and modernization.

Fig. 8 Misidentified LLPs by the original LLIED model due to suboptimal image quality. (a) During
model testing (Table 8), an LLP misidentification was attributable to OL image quality with extraor-
dinary superimposition of an LLR (i.e., Reveal LINQ™ identified with 99.9% probability) on the LLP
(i.e., Micra™ identified next with 21.6% probability). (b) During basic trialing (Table 9), a misiden-
tified LLP (i.e., Micra™ correctly identified with 4.7% probability, after a reveal LINQ™ identified
with 99.9% probability) was attributable to NR/OL image quality related to poor general conspicuity
and detail clarity, as well as to superimposed sternal wires.
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legacy LLIED types or new LLIED types still represented by very small patient subsets) mean-
ingful cross-validation assessment of identification accuracies (safety-level or specific-type)
could not be adequately evaluated.

3.2.2 Safety-level and specific-type identification accuracies during updated
model testing

Like with the nine-class original LLIED model in the AI model development population, tier-1
LLIED-detection of 100% was followed by high classification performance for LLIED identi-
fication by the 12-class updated LLIED model in the AI model update population, with the
identification assignments overall correct at 99.5% during model testing.

AUCs for the identification of the category of MRI-safety level (i.e., unsafe, stringently
conditional, assessment-requiring conditional, or simple conditional) consistently matched or
exceeded 0.99, accompanied by high sensitivities (≥99%) and specificities (≥90%) [Table 6].

For the identification of the original 9, plus three new, specific LLIED-types, AUCs were
1.00 for nine types, and 0.92 to 0.99 for three LLR types (Table 10).

Of the five misidentified LLR cases, the updated LLIED model displayed on the ZF GUI/
viewer the correct label assignment as the second, third, and fourth most likely in 2, 2, and 1
case(s), respectively. Suboptimal image quality was applied to two (both NR) of the five
misidentified cases.

3.2.3 Limited-deployment simulated real-world trialing of updated LLIED model

The initial use of the ZF GUI/viewer in our near-real world clinical test environment, with its
DICOM-SR output for this project, supports immediate model inference-result presentation
(including 0% to 100.0% probability display) simultaneously with the CXR examination posting
on the clinical PACS worklist. The previously described purposeful display-limitation of stacked
overlapping and identically labeled inference-GBBs to the one GBB with the highest probability
level on a case-by-case basis enhanced end-user experience by eliminating an extra 1 to 17
noncontributing overlapping identically labeled GBBs in 63 of the 100 cases. The result was
a remarkably simpler inference-result adjudication process without loss of model performance.

When combined, these capabilities facilitated user-friendly adjudication of inference results
(by conventional clicking) within seconds, including (1) Acceptance of a result correctly iden-
tifying an LLIED; (2) Correction (relabeling) of a misidentified LLIED result; (3) Result rejec-
tion by simple passive disregarding of a false-positive nonLLIED GBB (Fig. 10).

The results of the prospective application of the 12-class updated LLIED model within the
parallel ZF GUI/viewer test environment in the 100-case updated methodology trial population
were also strong. Following tier-1 100% detection of all 101 LLIEDs (two LLIEDs in one case),
strong tier-2 overall accuracy of 97% (98 of 101; sensitivities 75% to 98% and specificities 92%
to 93%) for the identification of safety-level category was achieved; stringently conditional and
unsafe categories were not represented in this experience (Table 7).

Specific LLIED types were also identified with a strong overall accuracy of 95% (96 of
101 LLIEDs, including all but 1 of the 14 examples of the three newly classified LLR types)
(Table 11).

Of the five misidentified LLIED cases, a valid GBB displaying the correct LLIED-type label
was shown by the ZF GUI/viewer as being the second most likely in two cases and third most
likely in three cases. Suboptimal image quality was noted in three (two OL and one NR) of the
five misidentified cases.

4 Discussion

The promise of AI to improve patient safety is well recognized.74 This study focused on gaining
insights into the performance readiness, including potential safety implications, as well as
essential infrastructural and operational requirements, of an AI model prior to its deployment
for real-world application. Promoting improved pre-MRI safety screening,4–14,17,18 our LLIED
methodology36 had been developed to potentially assist radiologists in reviewing digital frontal
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CXRs for the detection/localization and identification of a range of commonly inserted LLIEDs;
they vary in (1) MRI-related safety; (2) Associated interservice support needs (i.e., cardiology
peri-MRI evaluations of an assessment-requiring conditional LLP); (3) Related requirements for
MRI scanning modifications (e.g., more basic scanning with a stringently conditional PAPM).

4.1 AI Model Performance Optimizations and Clinical Implications

4.1.1 Uniqueness of LLIED use-case and developed AI model

The practical clinical use-case65,66 inspiring our initial development36 is distinctively different
from the most closely corresponding pursuits,30–35 due to its focus on the continuously evolving
array of modern much-smaller LLIEDs being inserted into the chest with greater frequency.
To our knowledge, this is the first reported achievement of AI-based radiographic detection and
identification (important to FDA recalls, such as the Nanostim LLP for dysfunction, as well as
to MRI safety) directed at LLIEDs, ranging from MRI-conditional to MRI-unsafe.

From the beginning, this work emphasized real-world conditions36–38,40,41,43–46 by
(1) Utilization of large datasets representing multiple geographically dispersed sites for model
development; (2) Representation of varying general radiographic technology producing digital
CXRs over almost three decades; (3) Inclusion of all LLIED image qualities (e.g., NR, OL, and
NR and OL, cumulatively representing 24% and 30% of AI model development population and
methodology trial population, respectively); (4) Model retraining to account for previously
unclassified LLIED types (i.e., creating a newer 12-class updated LLIED model to replace the
original nine-class model); (5) Simulation of initial real-world trialing of both LLIED AI models
on separate patient series (i.e., methodology trial population and updated methodology trial
population).

4.1.2 LLIED detection/localization and identification performance
of the adapting AI model

We found both the 9-class and 12-class LLIED AI models to consistently achieve the preman-
dated 100% detection/location sensitivity (in tier 1) in all described pre-deployment experiences;

Fig. 10 Simultaneous adjacent clinical PACS and ZF GUI/viewer displays. In the limited-deploy-
ment test environment, the standard clinical PACS display (a) is simultaneously accompanied by
an adjacent display of inference results by the ZF GUI/viewer (b) on the same monitor used by
radiologist for routine clinical image interpretations, although not yet integrated. On this frontal
CXR image, the 12-class updated LLIED model has correctly detected/localized and identified
(with GBB) the MRI-unsafe ERC (Bravo™ Reflux Capsule), with immediate single-click positive
adjudication (Red boundaries applied with acceptance) versus passive rejection of any false-
positive GBBs (maintained blue boundaries).
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the durability of the two models was confirmed by fivefold cross-validations. In addition, both
models consistently achieved high identification accuracies (in tier 2) for MRI-safety category
and specific-type in all reported evaluations, including mimicked real-world trialing (i.e., 98%
and 97% correct safety-level categorizations in the methodology trial population and the updated
methodology trial population, respectively).

4.1.3 Clinical implications of the adapting LLIED model

Due to the strength of tier-1 processing in our cascading AI methodology, no LLIEDs went
undetected in any of the described experiences with either the original LLIED model or the
updated LLIED model. Tier 2 related misidentifications were uncommon and most often attrib-
utable to suboptimal image quality.

When misidentifications were considered from an MRI-safety standpoint, it was noted that
in our reported cumulative pre-deployment experience, there were no cases of tier-1 nondetec-
tion and/or tier-2 misidentification of either an MRI-stringently conditional PAPM (i.e.,
CardioMEMS™ HF) or an MRI-unsafe ERC (i.e., Bravo™ Reflux Capsule), even when an
LLIED type was not previously classified. Thus, end-user adjudication of displayed inference
results on these two more risky LLIED categories/types was consistently positive, thereby fully
supporting higher levels of awareness of greater potential MRI risk in affected patients.

In the presence of corresponding classes for tier-2 processing, only 21 instances of
MRI-conditional LLIED misidentification were found in the following decreasing order:
(1) Simple Conditional LLR misidentified as another LLR (eight instances); (2) Simple
Conditional LLR over-identified as an assessment-requiring conditional LLP (i.e., Micra™)
(seven instances); (3) Simple conditional LLR over-identified as a stringently conditional
PAPM (i.e., CardioMEMS™ HF) (three instances); (4) Assessment-requiring conditional
LLP (i.e., Micra™) under-identified preadjudication as a simple conditional LLR (three
instances). Respectively, the related potential clinical safety and operational implications
included (1) No negative impact; (2) Premature operational considerations (e.g., unnecessary
engagement of cardiology for peri-MRI assessments); (3) Premature safety considerations
(e.g., plans to over-emphasize more basic forms of scanning); (4) Initial underestimation of
needed coordination of operational support (e.g., failure to engage cardiology for needed
peri-MRI assessments). However, it is important to realize that, as a decision-support assistant,
the inference results generated by our LLIED methodology (with 100% LLIED detection/
localization) are displayed directly to the radiologist for their adjudication before clinical use.
Therefore, such inconsistencies are likely temporary and become corrected during the regular
workflow, which is designed to actively involve the radiologist (rather than to function autono-
mously) and, hopefully in the future, is enhanced through integration with the EMR.

4.2 Essential Architectural, Workflow, and User-Experience Preparations
and/or Enhancements

Repetitive updating of an already mature and deployed AI model used in healthcare settings has
become a major focus of the AI community.44 This goal is highly dependent upon real-world
experiences with the clinical application of AI models,37,38,46 requiring periodic model retraining
to account for insights from end-user adjudications of model inference results.40,43 The needed
feedback to the models facilitates “concept drift” avoidance45,46 and ongoing adaptation,65–68

hopefully resulting in more robust and improved future performance.44,67

The importance of such continuous learning was reinforced in our pre-deployment work by
the fact that LLIED misidentifications were most often related to suboptimal image quality, fol-
lowed by the appearance of new and previously unclassified types. Nevertheless, in our proposed
clinical implementation, relying on the user-friendly ZF GUI/viewer created in response, all
LLIED cases would be detected by our two-tier cascading AI model (delineated by a GBB)
regardless of image quality, thereby already assisting the radiologist in LLIED recognition prior
to adjudication of the displayed identification labels with simple click-based responses for model
retraining. If a new LLIED type is recognized during routine clinical work, an ROI with a label
(generic or specific) can be easily applied by the radiologist for model updating.
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Less often acknowledged than continuous learning, but just as pertinent, is the need to keep
an AI model modernized,45,46 thereby making it more resistant to “catastrophic forgetting.”45,75

This work revealed the urgency to accommodate the unexpected early appearance of three new
LLIED types, necessitating pre-deployment retraining of the original nine-class AI model with-
out loss of original classification capabilities, thereby creating a fully functional 12-class AI
model more ready for deployment.

Our goal is to operationalize the aforementioned continuous-learning and modernization
processes, when needed (e.g., per number of user experiences, deployment time, added new
devices, or CXR data sources), relying on the backend database capabilities currently supporting
the ZF GUI/viewer with essential real-time monitoring and recording of all interactions with
the system.41,44,76,77 To our knowledge, beyond conceptual descriptions,41,45,46,68,75 there have
been no other academic or commercial reports of standard processes designed to support such
combined continuous learning/modernizing of imaging-AI models.

4.3 Limitations

We recognize the following limitations of our study.
First, the current need to execute our cascading models at a very low probability threshold to

prevent LLIED-detection failure creates additional GBBs, resulting in (1) additional FP GBBs
per correctly detected implant (i.e., TP result) in an LLIED case; (2) FP GBBs suggesting the
presence of LLIEDs in a nonLLIED case.36 Future considerations for dealing with this limitation
include (1) Adjustment of model parameters based on overall case-by-case CXR image quality;36

(2) Application of a single-tier faster R-CNN for blending detection and identification.78,79

Second, while this work represents the experience of a single-institution with inherent pop-
ulation bias (although LLIED designs are fixed according to FDA regulations), the input data
represented many sites (∼75) distributed nationwide, which contributed many years-worth (over
30) of digital CXR data.36 Nevertheless, with our populations representing inflated LLIED
prevalence, our reported model performances were potentially positively impacted.72,73 We plan
to rely on insights from postdeployment experience to guide future retraining needs.

4.4 Future Directions

The next phase of this work will focus on a true deployment of the described methodology,
(including 12-class updated LLIED model, ZF GUI/viewer, and repetitive continuous learn-
ing/modernization-based model retraining) within an appropriate clinical setting (e.g., for
prospective “real-world performance” monitoring and with a “predetermined change control
plan”).44 Additional output considerations include (1) Engagement incentives to radiologists for
adherence to adjudication activities (e.g., complimented by learning experiences worthy of CME
crediting); (2) Full integration of the LLIED model and ZF GUI/viewer into standard RIS-PACS
configurations; (3) Direct transmission of adjudicated LLIED results to designated fields in CXR
reports or patient EMRs,80 thereby reducing the chances for recording errors.15

5 Conclusion

This work assessed a previously described imaging-AI model during a pre-deployment exercise,
which provided the following important insights: (1) Robust 100% detection sensitivity for general
LLIED presence/location by both the original nine-class model and a newer 12-class model is
achieved during model testing and simulated real-world trialing; (2) High identification accuracies
for LLIED safety-level and specific-type are concurrently achieved by the same models; (3) Both
versions of the basic LLIED model consistently and correctly detect and identify stringently MRI-
conditional and MRI-unsafe types of LLIEDs; (4) Continuous learning and/or updating of the
basic LLIED model are essential processes that were both demonstrated due to the early appear-
ance of LLIED types; (5) A user-friendly ZF GUI/viewer, created to meet anticipated inference-
result display and adjudication needs, is vital to a successful imaging-AI model deployment and
facilitation of radiologist engagement. Of course, the actual value of our methodology will need
to be assessed during a true real-world deployment in an appropriate clinical setting.
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6 Appendices

This section is intended for providing further information on our design strategies for clinical
deployment as well providing further details on real-world algorithmic performance.

6.1 Appendix A: Essential Technical Developments Supporting Real-World
Model Deployment and Adaptation

A component-based simulation of deployment of our methodology was considered consistent
with several recent FDA-endorsed actions,44 including: (1) “predetermined change control plan”
(e.g., algorithm change protocol for how a model will learn and change while remaining safe and
effective); (2) “real-world performance” monitoring (e.g., seamless gathering and validation of
relevant “real-world” parameters and ongoing collection of performance data). To these ends,
such implementation must fully incorporate verified AI model output while presenting the infer-
ence results in a meaningful and highly user-friendly fashion (e.g., rapid return of results,
uncomplicated display), thereby facilitating their utilization by the CXR-interpreting radiologist
as deemed ethical, appropriate, and beneficial to patients.40–44,65,66

6.2 Appendix B: Selection/Development of Viewer for AI Model
Inference-Result Display and Adjudication

Our custom-designed, flexible (on-prem or web-accessed) ZF GUI/viewer, potentially for future
integration into the organization-wide clinical PACS-support infrastructure (Fig. 5),43 was cre-
ated for a model inference-result display to the end-user, replacing our previously described
GUI.36,47 The ZF GUI/viewer has been designed to support all phases of imaging-AI model
development and evolution in a user-interactive fashion, including the following: (1) Basic
image display; (2) Image annotation for input into model development; (3) Presentation of geo-
graphically coordinated model inference results in a conventional format (in <1 s); (4) Easy
indication of ground-truth judgment and/or modification of inference results by the end-user
for continuous feedback toward future model adaptation and hopefully improvement.43,66,67

6.3 Appendix C: Applying Data Standards, Supporting Interoperability,
and Enhancing User Experience

It is crucial that end-users prospectively adjudicate (i.e., accept, modify, or reject) the inference
results from an AI model on a case-by-case basis to reinforce the essential adaptation of the AI
model to changing real-world conditions.40,41,44,45,67,68 This expectation dictated to us the need to
utilize standards for variable data input and output to facilitate AI-model evolution. To that end,
DICOM-structured reports (DICOM-SR) were recruited in the ZF GUI/viewer primarily for
assigning spatial coordinates and simple shapes linked to coded text labels.42,43,69–71 DICOM-
segmentation (DICOM-SEG) was also incorporated for future pursuits needing representation
of more complex 3D shapes with the flexibility for manual editing during the adjudication
process.42,43,69–71

Based on practical experience of the ground-truth expert with the operations of the ZF GUI/
viewer, noncontributing inference-display redundancy and complexity (i.e., LLIED visualization
hindered due to multiple overlapping identically labeled GBBs) was reduced via case-by-case
limitation of the stacked inference-GBB display for each identified LLIED type to the one GBB
with the highest probability level.

With incorporation of the aforementioned cumulative capabilities and user-experience
enhancements (Appendices A and B), the ZF GUI/viewer is currently functioning in real-time
with limited-deployment in parallel with the routine PACS-dependent workflow within a test
clinical environment.76 This allows the radiologist, during routine clinical duties, to prospectively:
(1) Apply any appropriate AI-model to CXRs; (2) Adjudicate returned inference results;
(3) Identify needed modification of a model, the supporting architecture and/or workflow oper-
ations. The ZF GUI/viewer design incorporates DICOM-SR and DICOM-SEG formats to meet
current and future needs for inference-result display and adjudication (e.g., relabeling and segmen-
tation modification).76
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