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ABSTRACT

The present paper describes the requirements for software for diffractive optics and briefly explains some basic facts
and algorithms. Examples from an academically developed software package are given.
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1. INTRODUCTION

The rapid development of computer technology has triggered an enormous increase in the utilization of computers
in optics. Academic and commercial software installed on powerful PCs have become an important tool for the
numerical analysis of optical phenomena as well as the design of optical components and systems.

Initially, the use of computers in optics was to implement numerical techniques based on geometrical optics for
the optimization of refractive systems. As a result, numerous ray-tracing programs are now available and in use in
most optical laboratories.

In recent years the development of software for physical optics has become of concern. Wave propagation and
the interaction of electromagnetic waves with interfaces are the basic issues in physical optics of linear media. In
particular, the optics of laterally microstructured interfaces, i.e. diffractive optics, represents a significant extension
of physical optics.

Besides the fundamental research in diffractive optics, the implementation of software in this modern field of
optics requires the formulation of efficient algorithms for the analysis and synthesis of laterally microstructured
interfaces, i.e. diffractive elements. A basic design theory! allows the formulation of efficient algorithms for the
design of diffractive elements in the paraxial domain.

2. REQUIREMENTS FOR SOFTWARE IN DIFFRACTIVE OPTICS

To simulate a diffractive system some basic circumstances should be considered.

2.1. Wave representation

Electromagnetic waves are solutions of the 3D wave equation which are fully determined in homogeneous media
by a 2D plane. Thus, in scalar theory electromagnetic waves can be represented by complex-valued 2D matrices
determining amplitude and phase at each point. For the representation of a vectorial wavefront a further field can be
specified. The matrix representation requires sampling of the continuous function describing the wavefront. Because
of the discrete representation it is important to pay attention to the two contradicting demands of sufficient sampling
and memory requirements.
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Figure 1. Screen shot showing a dialog for a diffractive element design. In this case an eight-level diffractive phase
element was to be computed which transforms a Gaussian wavefront (small window in the middle of the upper row)
into the desired far-field intensity distribution showing the letters JAKS (upper right window with the circumscribed
region of the signal window). The computed phase element and the resulting wavefront can be seen in the lower row.
In addition, the region of amplitude freedom is specified by the window in the left of the upper row.

2.2. Wave propagation

One step towards software for diffractive optics is a proper numerical handling of wave propagation operators.? Due
to their different numerical and physical properties various operators should be implemented. The difference lies
in the physical validity, the numerical correctness of the output and the sampling grid of the resulting wavefront.
Their characteristics depend on several parameters such as wavelength, sampling period and propagation distance
but also on the spatial properties of the initial wavefront itself. The angular spectrum of plane waves, the Kirchhoff
integral, the Rayleigh-Sommerfeld integral, the Fresnel integral and the Debye approximation are the most well-
known wave propagation operators that should be considered included in a software package for physical optics.
Moreover, there exist several discrete versions for each of these continuous wave propagation operators with different
numerical properties.

Of course, one also has to pay attention to the computation time and memory requirements because wave propa-
gation is the basic and most time consuming part of most design algorithms for diffractive elements. Straightforward
implementations of the wave propagation operators normally require O(N*) operations in order to compute the wave
propagation from one surface to another of a field consisting of N x N sampling points. However, symmetry proper-
ties of most discrete wave propagation operators allow to express these in terms of the Fourier transform which again
may be computed by the fast Fourier transform (FFT) in only O(N?log(N)) steps. Most discrete wave propagation
operators can be reduced to one, two or three FFTs with an additional overhead of O(N?).

Besides the use of wave propagation operators in design algorithms, the simulation of wave propagation greatly
contributes to students’ understanding of the nature of waves.
2.3. Effect of microstructured interfaces

In addition to the behavior of waves in homogeneous media described in the section above it is important to model the
interaction between matter and electromagnetic waves. The scalar theory is valid for microstructured interfaces with
feature sizes larger than some wavelengths and such optical elements are normally referred to as paraxial diffractive
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Figure 2. Screenshot of DigiOpt showing different wavefront representations. Each subwindow in the upper row
describes a 2D wavefront in different representations (from the left: amplitude, phase in two different color modes,
real and imaginary part). In the bottom row a 1D wavefront and a profile of a line intersection of one of the 2D
windows can be seen. The statusbar of each window contains context dependent information such as number of
pixels, physical pixel size and energy of the wave.

elements. The effect of paraxial diffractive elements on an impinging wavefront can be modelled by the thin-element
approximation and the complex-transmission-approach. In this theory the effect of a diffractive element corresponds
to a pointwise multiplication of the wavefront with the complex amplitude of the transmission function describing
the diffractive element. In this model it is also easy to determine the microstructured interface if the wavefront
immediately in front and behind of the element is known, which is important for most design algorithms.

In the case of smaller feature sizes, rigorous wave theory has to be applied to simulate the interaction between
the electromagnetic wave and the diffractive element. Some of these methods are known as integral methods,
differential methods, the method of moments, BKK, FEM, etc. Unfortunately, a rigorous treatment requires high
computational costs. Moreover, the inverse problem of finding an interface from a given incident and diffracted wave
is not satisfactorily solved in the non-paraxial region as opposed to the paraxial design problem.

2.4. Design algorithms

Modern diffractive optics contains a variety of methods to design diffractive elements with certain optical functions
which are mostly based on the paraxial approximation. These include the iterative Fourier transform algorithm
(IFTA)3* also known as the Gerchberg-Saxton algorithm, direct binary search (DBS),® simulated annealing (SA),°
genetic algorithms (GA), different gradient methods, Dammann grating methods,” geometrical beam shaping meth-
0ds,®? etc. Of course, some of these should be contained in a software package for the educational and scientific use
in diffractive optics. To demonstrate the complexity of some of these algorithms a screenshot of the IFTA dialog of
the academically developed software package DigiOpt!%!! is shown in figure 1.

2.5. User-friendliness

A software package for diffractive optics should present itself with a user-friendly interface suitable for the untrained
as well as the more experienced user. The position in the trade-off between user-friendliness and complexity should
be carefully chosen. An example of a screenshot of a possible implementation is given in figure 2. Important points
for the user-friendliness are in particular

e visualization of optical elements and wavefronts in different representations



D1gi0pt for Windows Y5/N1

ar real_z. card_Its.card_Size.real Energy
ar field_Current.field Filter. field Circle.ani_a:

lcard_Size:=64; 77 Number of Pixels
real_: 01; 77/ Resonator length in n
card_Its:=150: 77 Number of iterations

ield_Circle:=CreateField(card_Size.card_Size.Rect(1l.2#r)):

ield_Filter:=CreateField(card_Size, card_Size.l.0-Rsct(x*Real(card_Sizes2))):

ield_Current :=CreateField(card_Size.card_Size.Random( )*Exp(i#(2.0#*Pi®*Random()))):
ShowField(field Filter):

repeat card_Its times
field Current =
Kirchhof fConv(
AddQuadraticPhase(
Kirchhof fConv(
AddQuadraticPhase(
field_Current#field Filterwfield_Circle.
real_z/4.0).
real_z
)#field Circle.
real_z/4.0).
real_z):

field_Current =Norm(field_Current):
AddToAnination(ani_a.field_Current):

end ;
hovField(field Current):

Figure 3. The text window shows a program performing a Fox-Li algorithm!? which simulates an optical resonator
with an internal optical element to induce higher modes (in this case a TEMg; mode). The upper window shows the
function of the internal optical mode filter. Beneath the output of the resonator after 150 roundtrips can be seen
and in the bottom window an animation of the mode development is depicted.

e easy access to basic functions of the software

e implementation of standard image processing and file handling features

e interfaces and matching file formats to standard software (graphics, mathematics, fabrication utilities, ...)
e online help system and documentation

e the user should be warned if he is about to perform physically illegal operations or encounters numerical
problems. Hints on how to overcome these problems should be given.

2.6. Flexibility

A strength of good software is the ability to enhance the built-in features. Thus the software should offer the
possibility for the user to easily develop and change self-written or existing algorithms. This can be customized by
a higher-level language designed for diffractive optics purposes. With such a programming language the student
has the possibility to understand well-known algorithms by implementing these on his own. For the scientific user
high-level programming offers the possibility to develop new algorithms quickly and to experiment with these in an
easy way. Thus rapid prototyping of optical systems is possible.

As an example of the power of high-level programming figure 3 shows a screenshot of DigiOpt with a short
program in the integrated programming language simulating an optical resonator. It can be seen that only a few
lines of code are necessary to implement relatively complex algorithms if the language is appropriate.

3. CONCLUSION

In conclusion, a software package for educational and scientific use in diffractive optics should fulfil the following
criteria:

1. user-friendliness
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. appropriate wavefront modeling
. implementation of various wave propagation operators
. appropriate modelling of the effect of microstructured interfaces

. flexibility
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