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ABSTRACT
In this paper we give an overview of some very recent work on the stochastic simulation of systems involving
chemical reactions. In many biological systems (such as genetic regulation and cellular dynamics) there is
a mix between small numbers of key regulatory proteins, and medium and large numbers of molecules. In
addition, it is important to be able to follow the trajectories of individual molecules by taking proper account
of the randomness inherent in such a system. We describe different types of simulation techniques (including
the stochastic simulation algorithm, Poisson Runge-Kutta methods and the Balanced Euler method) for treating
simulations in the three different reaction regimes: slow, medium and fast. We then review some recent techniques
on the treatment of coupled slow and fast reactions for stochastic chemical kinetics and discuss how novel
computing implementations can enhance the performance of these simulations.

Keywords: Stochastic simulation methods, chemical reaction systems, multi-scaled approaches, parallel com-
puting, biological applications

1. INTRODUCTION
There is now considerable evidence from both theoretical and experimental perspectives of the role of noise
in genetic regulation. Federoff and Fontana'3 remark that "stochasticity is evident in all biological processes.
The proliferation of both noise and noise reduction is a hallmark of organismal evolution." However, a natural
question to ask is what is the nature of this stochasticity? Hume22 notes that "transcription in higher eukaryotes
occurs with a relatively low frequency in biologic time and is regulated in a probabilistic manner." The comment
about "low frequency" is significant here and we will return to this later.

Gene expression within a cell is a complex process involving such factors as chromatin remodelling, transcrip-
tion, the export of RNA and the translation of mRNA into proteins. Physiological activity and cell differentiaton
within a mammalian cell is controlled by perhaps more than 10000 protein coding genes and thousands of genes
are expressed at very low copy numbers. This means that new gene profiling techniques such as microarrays
may not be able to reliably detect these numbers. Thus there is a great need for good models and effective
simulations to guide the experimentalist and to provide additional insights into the nature of genetic regulation.

Furthermore, Sano et al.32 remark that "initiation of gene transcription is a discrete process in which in-
dividual protein-coding genes in an off state can be stochastically switched on, resulting in sporadic pulses of
mRNA production." This is the dichotomy that we must resolve -proteins are discrete objects, yet their effects
are often modelled (as ordinary differential equations) in terms of concentrations.

We can, therefore, consider three different types of modelling regimes for understanding genetic regulation.
These include the discrete and stochastic, the continuous and stochastic and the continuous and deterministic.
An additional complexity arises when we consider both temporal and spatial effects.

Essentially the characterisations of these regimes depend on the nature of the reactions and the number of
molecules in the system being studied. In this paper we will review various simulation techniques that are relevant
to each of these regimes. In particular, we will also consider what happens for mixed systems with small numbers
of key regulatory proteins and a mix of medium and large numbers of other types of molecules. The basis of this
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paper is the stochastic simulation approach to biochemical reactions which was developed by Gillespie'6 through
the stochastic simulation algorithm (SSA). This is an essentially exact procedure for numerically simulating the
time evolution of a well-stirred chemically reacting system by taking proper account of the randomness inherent
in such a system.

Thus this paper is organised in the following manner. In section 2 we give a brief overview of the SSA
approach and discuss some new discrete simulation techniques that have been developed to overcome the inherent
limitations of the SSA. In section 3 we consider different ways of treating the other regimes (stochastic continuous
and deterministic) , while in section 4 we discuss some new multi-scaled techniques for simulating mixed systems
such as stochastic partitioning. In section 5 we will investigate some novel implementations of these models
based on grid computing and parallel computing while in section 6 we give some numerical results in a parallel
computing environment and the paper will conclude with some general remarks and discussion for future work.

2. DISCRETE SIMULATION METHODS FOR CHEMICAL REACTION SYSTEMS
The basis of our discussion in this paper is the stochastic simulation approach to biochemical reactions that
was developed by Gillespie'6 through the stochastic simulation algorithm (SSA). This is an essentially exact
procedure for numerically simulating the time evolution of a well-stirred chemically reacting system by taking
proper account of the randomness inherent in such a system. It is rigorously based on the same microphysical
premise that underlies the chemical master equation (Gillespie'8) and gives a more realistic representation of
a system's evolution than the deterministic reaction rate equation (RRE). In particular, the RRE is entirely
inappropriate if the molecular population of some critical reactant species is so small that microscopic fluctuations
can produce macroscopic effects. This is especially true for the genetic/enzymatic reactions in living cells. As
with the Chemical Master Equation, the SSA converges, in the limit of large numbers of reactants, to the same
solution as the Law of Mass Action.

Despite continued refinements to the numerical methods used in the SSA, it remains a computationally
demanding approach limiting its applicability, especially for large reaction networks required for modelling most
realistic gene networks. The algorithm takes time steps of variable length, based on the rate constants and
population size of each chemical species. The probability of one reaction occurring relative to another is obtained
by multiplying the rate constant of each reaction with the numbers of its substrate molecules. According to the
correct probability distribution derived from the statistical thermodynamics theory, a random variable is then
used to choose which reaction will occur, and another random variable determines how long the step will last.
The chemical populations are altered according to the stoichiometry of the reaction and the process is repeated.
The cost of this detailed stochastic simulation algorithm is the large amount of computing time. The key issue
is that the time step for the next reaction can be very small indeed if we are to guarantee that only one reaction
can take place in that time interval.

In recent years, the SSA has been successfully applied for simulating genetic/enzymatic reactions in which
the molecular population of some critical reactant species is relatively small, for example, lambda phage2 and
circadian rhythms" •20 J has also been applied to much larger systems than originally designed for. For example,
Arkin et al.2 used the SSA to simulate a model of lambda phage containing 75 equations in 57 chemical species.

An alternative approach to the SSA is via the StochSim package developed initially by Carl Firth28 as part
of a study of bacterial chemotaxis. The aim was to develop a realistic way of representing the stochastic features
of this signalling pathway and to handle the large numbers of individual reactions encountered.'4 Molecules
or molecular complexes are represented as individual software objects. Reactions between molecules occur
stochastically, according to probabilities derived from known rate constants.

StochSim works by quantising time into a series of discrete, independent time intervals, the sizes of which are
determined by the most rapid reaction in the system. In each time interval, a molecule is selected at random and
then another object (either a molecule or a pseudo-molecule) is again selected at random. If two molecules are
selected, any reaction that occurs is bimolecular, whereas if one molecule and a pseudo-molecule are selected, it
is unimolecular. Another random number is then generated to determine if a reaction will occur. The probability
of a reaction is retrieved from a look-up table and if this exceeds the random number, the particles do not react.
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On the other hand, if the probability is less than the random number, the particles react, and the system is
updated.

StochSim is likely to be slower than the Gillespie algorithm in calculating the eventual outcome of a small
set of simple biochemical reactions, especially when the number of molecules is large. However, if the system
contains molecules that can exist in multiple states, then StochSim may not only be faster but also closer to
physical reality.

One of the great challenges in the efficient simulations of chemical kinetic systems is how we deal with mixed
systems in which some key species have low abundances (as is the case of some molecules in genetic regulation)
while other molecules have large abundances and can be modelled via continuous SDEs. Thus a vital question to
address is how we can link discrete and continuous models and simulation algorithms in a sensible and efficient
manner when treating chemical kinetic systems? A number of authors have addressed this issue recently including
Rao and Arkin,29 Haseltine and Rawlings2' and Burrage et al.8 based on partitioning of the system. These
issues become even more important when spatial effects are considered.

More recently, Schnell and Turner33 and Berry3 have addressed the issue of some of these stochastic ap-
proaches failing to incorporate non-homogeneities typical of in-vivo conditions into models. Berry3 considers
Monte-Carlo simulations on a two dimensional square lattice. Each molecule is mobile on the lattice through
random walks and chemical interactions. The fundamental difference between this approach and SSA is that the
SSA uses the spatial homogeneity to derive a probability distribution for the time between elementary reactions
and then samples randomly from this distribution to simulate the dynamics of the reaction. The Monte Carlo
approach assumes only that the molecular motion is Brownian. Schnell and Turner33 have used this approach
in order to try to understand how the conventional chemical kinetic equations based on rate constants fail to
describe the reactions in vivo conditions.

When minimal obstructions to diffusion are present, the rate constant approach is reasonable but in the
presence of significant obstructions to diffusion, simulations and experiments show that log(k) decays linearly on
a logarithmic time scale and so k is time-dependent. Schnell and Turner propose replacing reaction constants
with time dependent reaction coefficients of the form

k(t) = k1t', hE (0,1], t� 1,
where h is a constant corresponding to inhomogeneous and/or dimensionality restricted environments. See also
Kopelman25 and Tian and Burrage.37

We now give a brief review of the stochastic simulation algorithm for chemical reaction systems. We will,
for the meantime, assume that we have a well-stirred mixture at constant temperature in a fixed volume 1.
This mixture consists of N � 1 molecular species {S , . . . , SN} that chemically interact through M 1 reaction
channels {R1 , . . . , RM}. The restriction that is fixed can be relaxed but we will not do that here.

The dynamical state of this system is denoted as X(t) (X1(t), . . . , XN(t))T, where X(t) is the number of
Si molecules in the system at time t. The initial state is given by X(t0) =X0. For each j, j = 1, . . . , M, we will
define the propensity function a3(X) such that a3(X(t))dt is the probability that given X(t) =X, one reaction
R will occur inside Q in the next infinitesimal time interval [t, t + dt).

When that reaction occurs, X(t) changes its state. The amount by which X2 changes is given by v3, which
represents the change in the number of S molecules produced by one B3 reaction. The N x M matrix iiwith
elements uji is called the stoichiometric matrix. In particular, if just the jth reaction occurs in the time interval
It,t + dt), the jth vector ii3 of the stoichiometric matrix is used to update the state of the system by

X(t+dt)=X(t)+u3.
We see that the propensity functions and state-change vectors completely characterize the chemical reaction
system.

In the discrete and stochastic case the X2(t) represent the number of S molecules at time t and thus X(t)
takes on integer values in a non-negative integer lattice of dimension N. In fact X(t) is a discrete (jump) Markov
process. As such it has a time evolution equation associated with it which describes the probability P(x, tjxo, to)
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that X(t) = x given X(t0) = xo. This equation is called the Chemical Master Equation (CME) and it can be
written as

P(x,tjxo,to)
= (a(x—v)P(x— v,t1xo,to) —aj(x)P(x,txo,to)).

In general this discrete parabolic partial differential equation is too difficult to solve (either analytically or
numerically) and other techniques are needed to simulate the X(t).

As a particular example we consider a simple chemical reacting system with 3 molecular species and 4 reaction
channels, namely

Si $ 0
81+81 !3 S2

52 4 S+S.
52 4 53.

This system contains a reversible dimerization of the monomer S into an unstable 52 ,which can convert to a
stable form 53 by reaction R4. In this case the propensity functions are given by

ai = k1S1

a2 k2S/2
a3 k3S2

a4 =

and the stoichiometric matrix ii is given by

-1 -2 2 0
0 1 -1 -10001

A method for simulating such systems is the so-called Stochastic Simulation Algorithm (SSA) of Gillespie,'6
which is an exact and direct representation of the evolution of X(t). There are several forms of this algorithm.
The direct method works in the following manner.

Method 1 (The direct method). With two independent samples r1 and r2 of the uniformly distributed
random variable U(0, 1), the length of the time interval {t, t + dt)is determined by

1 fi\dt= ln(—J,ao(X) r,j
where ao(X(t)) is the sum of all the propensity functions

ao(X) = ak(X).

The determination of the specific reaction occuring in [t, t + dt) is given by the index j satisfying

i—i j
>ak(X) <r2ao(X) <>ak(X).

The update of the system is then given by

X(t + dt) = X(t) + ii.
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The point about the SSA is that the time step r is taken small enough to guarantee that only one reaction
occurs in that time interval. Clearly the SSA can be very computationally inefficient especially when there are
large numbers of molecules or the propensity functions are large.

Recently, considerable attention has been paid to reducing the computational time of simulation algorithms
for stochastic chemical kinetics. Gibson and Bruck'5 refined the first reaction SSA of Gillespie by reducing the
number of random variables that need to be simulated. This can be effective for systems in which some reactions
occur much more frequently than others. A different approach is adopted by Rao and Arkin29 who simulate
systems that have been simplified by quasi-steady state assumptions. Resat et al.3' treat systems which have
widely varying rate constants by applying a weighted Monte Carlo approach.

Gillespie'9 proposed two new methods, namely the r-leap method and the midpoint r-leap method in order
to improve the efficiency of the SSA while maintaining acceptable losses in accuracy. The key idea here is to
take a larger time step and allow for more reactions to take place in that step, but under the proviso that the
propensity functions do not change too much in that interval. Thus in the time interval [t, t + r) and with the
present state X(t) at time t, then the number of times that the reaction channel R3 will fire is a Poisson random
variable

K3(T; X, t) = P(a(X),r), j = 1, . . . , M.

Here the notation P(A, t) denotes a stochastic Poisson process with mean At and variance At and where

Pr(P(A, t) = k) = e_t(At)k

These considerations lead to the r-leap method.

Method 2 (The r-leap method). Choose a value for r that satisfies the Leap Condition: i.e., a temporal
leap by r will result in a state change A such that for every reaction channel R3 , a3(X+ A) —a(X)I is "effectively
infinitesimal." Generate for each j = 1, . . . , M a sample value k3 of the Poisson random variable P(a3(X), r),
and compute A = >i kjvj. Finally, perform the updates by replacing t by t + '1 and X by X + A.

Since the 'i--leap method uses the initial state X to approximate the states in the time interval {t, t + 'r), its
efficiency can be improved by computing a better approximation to the states in the given time interval - for
example, by an estimation at the midpoint t + r/2. This leads to the midpoint 'i—leap method.

Method 3 (The midpoint 'r-leap method). For the selected leaping time r (which satisfies the Leap
Condition), compute the expected state change = >ia3(X)v during the time period [t, t + ). Then use
the estimated state X' X + [A] to generate for each j = 1, . . . , M a sample value k3 of the Poisson random
variable P(a3(X'), 'r). Compute the actual state change, A = kvj, and perform the updates by replacing
t by t + r and X by X + A. Here [I denotes the integer part.

Burrage and Tian7 introduced the framework of Poission Runge-Kutta (PRK) methods for simulating chem-
ical reaction systems. These PRK methods are related to the class of stochastic Runge-Kutta (SRK) methods
for solving stochastic differential equations driven by Wiener noise.

3. SIMULATION METHODS FOR DIFFERENT REGIMES
Now if a chemical reaction system possesses a macroscopically infinitesimal time scale so that during any dt all
of the reaction channels can fire many times, yet none of the propensity functions change appreciably, then the
jump Markov process can be approximated by a continuous Markov process. This Markov process is described
by the Chemical Langevin Equation (CLE), which is a stochastic ordinary differential equation (SDE) - see

Gillespie.'7 It takes the Ito form

M M ___
dX =>vjaj(X)dt+>vj/aj(X)dWj(t), (1)
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where the Wj(t) are independent Wiener processes.
The CLE represents processes in the intermediate regime, that is those processes that are stochastic and

continuous. A Wiener process is a stochastic process satisfying

E(W(t)) = 0, E(W(t)W(s)) = min{t,s}.

It is known that the Wiener increments are independent Gaussian processes with mean 0 and variance t —
(that is, N(O, t — sI)) Thus the Wiener increment z.W(t) W(t + zt) — W(t) is a Gaussian random variable
N(O, it) = /N(O, 1).

The Chemical Langevin Equation is an example of the more general class of Ito Stochastic Differential
Equations given by

dy(t) = go(y(t))dt+ g(y(t)) dW(t), y(to) = Yo, Y E Rm. (2)

Thus general classes of methods that can be used to solve (2) can also be used to simulate solutions of (1), (see
Kloeden and Platen,24 for example).

In the case that the deterministic component dominates the noise terms then this leads to the standard
chemical kinetic approach that is described by the reaction rate equations

X'(t) = vja(X(t)). (3)

Equation (3) represents the third regime for modeling chemical reaction systems and there are standard tech-
niques for computing numerical approximations to this ODE system.

Just as there is a natural relationship between the modeling of the discrete, continuous stochastic and deter-
ministic regimes so there is a relationship between the simulation techniques.

A Poisson random variable P(a3(X), r) with a large mean a3(X)r can be approximated by a Gaussian random
variable N(a(X)'r, a3(X)'r), since

P(a(X),r) N(a(X)r,a(X)r) = a(X)r + a(X)rN(O,1),

where N(p, 2) is a Gaussian random variable with mean 4u and variance cr2. This can be viewed as

P(a(X),r) a(X)r + /aj(X)L�W(t). (4)

Now the simplest numerical method for solving (2) is the Euler-Maruyama method. It takes the form

Yn+1 =y+ hgo(y) + t1 = t + h,

where W(t + h) —W(t) is a Gaussian random variable N(O, h).

The Euler-Maruyama method converges with strong order 0.5 and weak order 1 to the Ito form of the SDE.
If it is applied to (1) it takes the form

M M ___
X1 = X + r uja(X) + Jaj(X).

Now using the approximation in (4) we can write this as
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xn+1 = xn + vjPj(a(X),r).

This method is nothing but the r—leap method of Gillespie. Thus the 'r—leap method is the Euler-Maruyama
method applied in the discrete setting when there are small numbers of molecules.

This has led Burrage and Tian7 to consider a general class of explicit Poisson Runge-Kutta (PRK) methods
in which s intermediate approximations are simulated within a given step. This class of method takes the form

M

= Xfl+>ukPk(>Wjjak(Y),r), i=1,,s
k=1 j=1

M s
xn+1 = X+vkPk(f3ak(Yj),r).

k=1 j=1

In general it is sufficient to consider simulation methods in which s is 1 or 2, and this gives rise to a general class
of two stage methods of the form

Y = X + vkPk(Oak(X),r)

xn+1 = xn + UkPk((1 — fl)ak(X) + flak(Y),r).

This method can be viewed as the application of a two stage Runge-Kutta method to (3) and takes the form

Y = X + rO Ykak(X)

xn+1 = Xn+rvk((1 —fi)ak(X)+flak(Y))

and can be characterized in tableau form by

0 0 0
0 0 0. (5)

1—/3 13

Runge-Kutta methods represent a very important class of methods for solving Ordinary Differential Equations
(see Butcher'°). Note that if /3 = , (5) is of order two when applied to Ordinary Differential Equations of
initial value type.

Burrage and Tian7 consider two new stochastic simulation methods methods with j3 =: the Heun PRK
method (0 = 1) and the R2 PRK method (0 = ). The latter is so-called because it is directly related to the R2
method for solving Stratonovich SDEs (see P.M.Burrage9).

An important issue here is that of stiffness. For ODE systems a problem is stiff if it has widely varying
eigenvalues. In this case explicit methods cannot be used and implicit methods such as the implicit Euler or the
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trapezoidal method have to be used. When applied to (3) these, respectively, take the form

xTh+1 = xfl + T vkak(Xfl+1)

xn+1 = xn + r/2 uk(ak(X) + ak(Xfl+1)).

Rathinam et al.3° consider how stiffness manifests itself at both the continuous deterministic and discrete
stochastic levels. In this case explicit methods become impractical. The authors construct two implicit versions
of the explicit r-leap method known as the rounded and unrounded implicit r-leap method that have better
stability properties than the explicit r-Ieap method and are suitable for solving stiff chemical systems. The
unrounded method has the form

M M
xn+1 = xn + 1i: (a(Xi) — a(X)) + : (a(X), r)

j=1 j=1

but suffers from the drawback that XH1 —X, is typically not an integer vector. Rathinam et al. overcome this
difficulty by a two-stage process which is similar to a prediction-correction process given by

M M
x = x +-: (a3(X) — a(X)) + > vPj (a(X),'7-)

j=1 j=1
M M

xn+1 = xn + : [T (a(X)— a(X))]+ ujPj (a(X), r)
j=1 j=1

where again [ } denotes the nearest nonnegative integer.
Now an SDE of the form (2) is said to be stiff if it has widely varying Lyapunov exponents (these are

the stochastic counterparts of eigenvalues). In this case there are three possible simulation approaches: explicit,
semi-implicit and fully-implicit methods. In the first case, explicit methods can be suitable for stiff problems only
if the stepsize is not too small or if the additional computation associated with implicit methods is prohibitive.
Perhaps the simplest method in the second class is the semi-implicit Euler method which takes the form

Yn+i = Yn + hgo(y1) +

This method works well if7 is stiff only in the deterministic component but less well if there is also stiffness in
the stochastic components. Milstein et al.27 introduced the Balanced Euler method to overcome this limitation;
it takes the form

Yn+1 = y + (I + Ca)' (h9o() +

The matrix C7 is chosen to be of the form

co(y)h +
d

Cj(yn)

where the c3 (y) are matrix functions chosen to give appropriate damping and guarantee existence of solutions.
Note that the fully-implicit Euler method

Yn+i = y+hgo(yi) +
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cannot guarantee convergence at any particular time step since the Wiener increments can take on positive or
negative values with equal probability and in any case does not converge to the Ito solution if convergence does
take place - see Burrage and Tian,6 for example. Alcock and Burrage' have considered improvements over
the Balanced Euler method in terms of better order and stability properties while Tian and Burrage36 have
constructed high order implicit Taylor methods for stiff SDEs. Both the semi-implicit Euler method and the
Balanced Euler method have strong order 0.5 and weak order 1.

What we see from the above discussion is an attempt to construct families of simulation methods that
can move between the discrete, continuous stochastic and deterministic regimes in a natural manner. This is
very important when dealing with mixed chemical systems, such systems can be viewed as consisting of three
different regimes and can be solved by coupling together three different simulation approaches applied to each
of these regimes. For example, for mixed systems Burrage et al.8 use the SSA when there are only a very few
molecules; the explicit PRK approach (as typified by the r-leap method) is used for components of the system
with moderate numbers of molecules and a simple SDE method for solving the CLE (1) is used when there are
very large numbers of molecules.

4. MULTI-SCALED APPROACHES TO CHEMICAL REACTION SYSTEMS
Recently two new approaches by Rao and Arkin29 and Haseltine and Rawlings2' have been considered in an
attempt to speed up the performance of the SSA. Both of these ideas are based on partitioning of the system. In
the case of Rao and Arkin, they consider a time scale separation in which a subset of the system is asymptotically
at steady state. This is called the quasi-steady-state assumption (QSSA) and eliminates the fast dynamics that
is responsible for the poor performance of the SSA. If the QSSA is applied in deterministic kinetics, the ODEs
describing the intermediate species are set to 0. In the stochastic setting the system is split into primary (y) and
ephemeral (z) subsystems.

Let P(y, z;t) be the probability density function of the entire system so that

P(y,z;t) =P(zly;t)P(y;t).

ThenRao and Arkin assume that z conditional on y is Markovian, so that for fixed y the conditional probability
distribution P(zly; t) approximately satisfies a master equation. If, in addition,

dP(zly;t)
dt

so that
P(zly;t) P(zly),

then a chemical master equation for describing the evolution of the probability density function can be obtained
solely in terms of the primary species y. The SSA can then be applied to this subsystem in a transparent manner.
As a particular case Rao and Arkin29 show how a simple enzymatic reaction involving an enzyme, substrate and
enzyme-substrate complex in which the substrate concentration is much larger than the enzyme concentration
leads, via QSSA arguments, to applying the SSA with a propensity function of the form a(s) = - which is
of course the Michaelis-Menten approximation. Finally, Rao and Arkin29 consider, as a specific example, the
behaviour of the PR promoter in conjunction with the Cro protein in A bacteriophage. The PR promoter plays
an important regulatory component for determining the lysis or lysogenic pathways in the lambda infection of
E. coli; see, for example, Shea and Ackers,34 Arkin et al.,2 Tian and Burrage.37

Using the ideas of Rae and Arkin,29 Haseltine and Rawlings2' attempt to speed up the performance of the SSA
by partitioning a chemical reaction system into slow and fast reaction subsets. The slow subsystem corresponds
to extents with small propensity functions and few numbers of reactions, while the latter corresponds to large
propensity functions and large numbers of reactions. This partitioning is achieved by exploiting the structure of
the CME and deriving master equations that describe the evolution of the probability density function for both
the slow and fast subsystems. The slow system is treated by the SSA, while the fast system is treated either
deterministically or by applying the explicit Euler-Maruyama method to the CLE. Thus at each time point t,,
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the CLE is repeatedly solved until t1 =t + r is reached and then the SSA is applied to the slow subsystem
with a stepsize of r.

Some remarks can be made about this approach.

. In order to move from the continuous to the discrete stochastic regime a rounding process must be adopted.
This causes negligible errors as the values for the molecular species in the continuous regime are large.

. In the Haseltine and Rawlings approach it is not clear what the specific details for partitioning into slow
and fast reactions are but they recommend maintaining at least two orders of magnitude difference between
the partitioned reaction probabilities. However it is important for the partitioning to be adaptive and to
change throughout the interval of integration.

. Haseltine and Rawlings use an explicit method, namely the Euler-Maruyama method, for simulating the
CLE. However, since the propensity functions in the CLE are large, the SDE is stiff (in the sense of widely
varying Lyapunov exponents) and thus some consideration could be given to using semi-implicit or fully-
implicit methods for this component. This could come at some cost if the dimension of the fast subsystem
is at least moderately large.

In spite of these remarks, the papers by Rao and Arkin29 and Haseltine and Rawlings2' represent a significant
attempt for developing simulation techniques that interface between microscopic and macroscopic regimes.

Burrage et al.8 extended this approach to classifying reactions into slow, intermediate and fast regimes.
These regimes are characterised by the presence of one or more slow, intermediate and fast reacting species. The
classification is in terms of the size of the propensity functions but also in terms of the number of molecules
in the system. Thus at every time step they classify the system as slow, intermediate or fast and then form
three vectors corresponding to the slow, intermediate and moderate regimes and place in those vectors the
corresponding reaction number. If there are no reactions in say the intermediate vector for a given time step
then that means there are no intermediate reactions for that step and the simulation regime changes accordingly.

In some cases it is possible to scale systems such that each term in the governing equations is composed of
an expression of order of magnitude unity, multiplied by a dimensionless parameter, and this can lead to semi-
autonomous simplification procedures. However, the approach adopted by Burrage et aL8 is based on trying to
get a completely general, adaptive, partitioning approach for simulating chemical reaction systems.

5. NOVEL IMPLEMENTATIONS
Recently the SSA has been applied in a number of settings involving genetic regulation. Arkin et al.2 used
the SSA to simulate a model of lambda phage containing 75 equations in 57 chemical species, while Kierzek23
simulates the expression and activity of LacZ and LacY proteins in E. coli with 22 reactions and 23 molecular
species. In this latter work, Kierzek presents a quite sophisticated implementation of the SSA in a software
package known as STOCKS. The implementation treats both the growing volume of a cell and the simulation of
cell division.

Because of the nature of SSA, even systems of moderate size such as the ones described above can take several
hours to simulate on a fast PC. If hundreds or even thousands of simulations are needed inorder to calculate
statistics about moments or to estimate the underlying probability density function, then it clearly makes sense
to use novel forms of computing such as grid computing or parallel computing. The need for such infrastructure
becomes even more apparent if we are trying to simulate cell models through the cell cycle from a single cell.
Then we may be dealing with thousands of cells - see Smallwood et for example.

Indeed Endy and Brent'2 have observed that researchers investigating the cell doubling of relatively simple
organisms such as E. coli require a single simulation of 1O' 1016 reactions. In addition, in order to collate
meaningful statistics, hundreds, if not thousands, of these simulations are needed. The main focus of this paper
has been on a review of appropriate simulation algorithms operating at the slow, intermediate and fast reaction
regimes. Irrespective of these algorithmic advances there is also a need to couple these approaches to sophisticated
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implementations using, for example, parallel and grid computing. A number of groups are working on this - see,
for example, Kierzek,23 Burrage et al.5 and McCollum et al. •26

Now we discuss how high performance computing can be used to reduce computational time. According to
the features of underlying problems, it has been proposed that there are four types of parallelism for stochastic
simulations. They are parallelism across the method, parallelism across the system, parallelism across the step
and parallelism across the simulation (Burrage et al.4). Here we only address parallelism across the system and
parallelism across the simulation.

We first propose a general formulae for representing propensity functions for different types of biochemical
reactions. Here we are interested in biological systems modeled by three types of elementary reactions, namely
the first order reaction, the second order reaction and the homodimer formation. These reactions can be written
in a general form

X+Xi—-Xk (6)

with propensity function a(X) = cX2X3 . The third and higher order reactions are not studied here as they
can be reasonably estimated by the combination of second order reactions.23 For the three types of elementary
reactions, the molecular species, reaction rates and propensity functions are defined in the following way:

(1) the first order reaction
xi Xk, a(X) = C1XIXM+1

where XM+1 denotes a pseudo-molecular species whose molecular number is always 1;

(2) the second order reaction
xi + x Xk , a(X) = c2XjXj;

(3) the homodimer formation

xi + x Xk , a(X) = -XjXj.
Using the general form (6), propensity functions can be written as

a(X)=kXiX2, j=1,...,n
which can be defined by a rate vector k = (k1, . . . , k)T and a (n x 2) index matrix with elements ji and j2
in the i-th row. Then the calculation of propensity functions can be implemented in parallel if the number of
reactions is large.

For stochastic models we normally need hundreds or thousands simulations to get statistical properties of the
underlying system. One feature of these stochastic simulations is the independence of each simulation. It is ideal
to simulate the system on different processes in the MPI/PVM environment using the MASTER/SLAVE model.
The MASTER process will send parameters and initial conditions to each SLAVE process, receive simulation
results from each SLAVE, and then compute the final statistical values. Each SLAVE receives from the MASTER
process the parameters it needs for computation, simulates the system and sends back the results. The MASTER
process can either be a worker process for one simulation or just be the process for passing information between
SLAVE processes.

One important issue in stochastic simulations is the independence of generated random numbers in each
process. This property directly influences the statistical results of stochastic simulations. In the MPI/PVM
environment we generate different random seeds for different processes and each process receives a seed from the
MASTER process at the beginning of simulation. Then each process uses the generator RANDOMNUMBER
in FORTRAN 90 to generate uniformly distributed random numbers. In order to generate the Gaussian random
numbers, we use the Box-Muller method, given by

C1 = /In(U1) cos(2irU2), C2 = /—2ln(Ui) sin(2irU2), (7)

where U1 and U2 are two independent U(0, 1) uniformly distributed random numbers, and C1 and C2 are two
independent N(0, 1) standard Gaussian samples.

Proc. of SPIE Vol. 5467     321



Reaction rate constant
—ii- PLac + RNAP -+ PLacRNAP 0.17ii PLacRNAP - PLac + RNAP 10

3 PLacRNAP —+ TrLacZl 1

iii TrLacZl -4 RbsLacZ + PLac + TrLacZ2 1

5 TrLacZ2 -4 TrLacYl 0.015
6 TrLacY1— RbsLacY+TrLacY2 1

—- TrLacY2 -* RNAP 0.36

i!i Ribosome + RbsLacZ -+ RbsRibosomeLacZ 0.17

—p- Ribosome+RbsLacY —+ RbsRibosomeLacY 0.17
10 RbsRibosomeLacZ —* Ribosome+RbsLacZ 0.45
11 RbsRibosomeLacY —+ Ribosome+RbsLacY 0.45
12 RbsRibosomeLacZ -+ TrRbsLacZ+RbsLacZ 0.4
-ji- RbsRibosomeLacY — TrRbsLacY+RbsLacY 0.4
14 TrRbsLacZ -+ LacZ 0.015

iI_i TrRbsLacY -+ LacY 0.036
LacZ — dgrLacZ 6.42E-5

--- LacY -4 dgrLacY 6.42E-5
RbsLacZ -9 dgrRbsLacZ 0.3
RbsLacY -4 dgrRbsLacY 0.3
LacZ+lactose —+ LacZlactose 9.52E-5
LacZlactose -4 product+LacZ 431

—-- LacY -4 lactose+LacY 14

Table 1. A full list of reactions arid rates

Numerical results in this paper are obtained from parallel computing which is carried out on an SGI Origin
2000 scalable shared memory parallel computer at the University of Queensland. The command in Fortran 90
DATEANDTIME is used to measure the program's elapsed time. The timings were calculated from 5 runs,
discarding the slowest and fastest and then averaging the remaining times over 3 runs.

6. A NUMERICAL EXAMPLE
In this section we will simulate the expression and activity of LacZ and LacY proteins in K Coli. A detailed
description of the biological significance of the model is given in Kierzek23 but we give the full list of reactions
here in Table 1. There are 22 reactions and 23 molecular species in this model. The initial state is PLac =1,
RNAP and Itibosome are generated from ramdom pools at each step, and all other elements 0.

In a single generation it is assumed that the cell doubles its volume from 1 to 2. This is achieved by letting
the volume grow as V(t) = 1 + t/T, where T is the cell generation time. Thus at each simulation time step, the
rates of all the second order reactions are divided by the current volume. Secondly when the system reaches the
generation time, all of the reactants that model the DNA elements are doubled (implemented by a separate set
of reactions from that being modelled). Then the numbers of all the molecules present in the system are divided
by two, the volume of the cell is reset and the behaviour of a new cell is simulated for the next generation time.

In the OpenMP environment we use the command

! \$OMP PARALLEL DO PRIVATE(i) , shared(a,b)

DO I = 1, N

END DO

! \$OMP END PARALLEL DO
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Figure 1. Speedup and efficiency of parallel computations in the MPI environment.

to perform the following parallel computations:

(1) calculate the propensity functions for 22 reactions at each step of SSA;

(2) simulate samples from random pools for RNAP and Ribosome;

(3) generate uniformly distributed random numbers.

As we record the numbers of proteins after every 10000 steps in SSA, the samples for the random pools and
for the uniformly distributed random variable are generated in advance for every 10000 reactions.

As the number of reactions in this system is just 22, it is hard to see any speed-up in the OpenMP environment
for a single simulation. The computing time with two processes is just a few minutes less than the sequential
computing time which is one hour, thirty-six minutes and thirty-four seconds. If four processes are used, the
computing time is larger than the sequential computing time. Here we should indicate that the idea in Section
5 is very useful for parallelism across the system. Currently we are investigating a biological system with spatial
properties. When dividing space into a number of subspaces, we obtain a very large number of reactions in the
system which is the sum of the numbers of reactions in all of the subspaces.

For parallel computing in the MPI environment, the MASTER sends the random seed and the initial condition
to each SLAVE. After one simulation each SLAVE sends to the MASTER the simulation results which are then
stored in a result matrix. If the number of simulations is larger than the number of available processes, we can
determine in advance the number of simulations for each process. When all of the required simulation results
are obtained, the MASTER will calculate certain statistical values such as the mean and variance.

MPI is an ideal environment for the parallel simulation of stochastic biological systems. From the simulation
results given in Figure 1 , we can see the efficiency is very close to 1 . The data in Figure 1 are based on 120
simulations with 6, 8, 10 or 15 processes in use.

In conclusion, the dominating theme of the research described in this paper is the understanding of cellular
dynamics in terms of interactions among the molecular components of a living cell. Of course we are a long
way from this goal but new technologies such as the Functional Molecular Cinematography Unit offer a way of
tracking the motion of individual molecules within a living cell. This offers a mechanism for the development and
validation of more sophisticated models based on stochastic chemical reaction systems. If this is then coupled
with sophisticated simulation and three dimensional visualisation techniques then we can really start to approach
the holy grail of genomics, namely the ability to predict the dynamic effects on an organism of gene expression.
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