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Abstract. We have explored the use of optical coherence tomography (OCT) as a noninvasive tool for assessing the
toxicity of topical microbicides, products used to prevent HIV, by monitoring the integrity of the vaginal epithelium.
A novel feature-based segmentation algorithm using a nearest-neighbor classifier was developed to monitor
changes in the morphology of vaginal epithelium. The two-step automated algorithm yielded OCT images with
a clearly defined epithelial layer, enabling differentiation of normal and damaged tissue. The algorithm was robust
in that it was able to discriminate the epithelial layer from underlying stroma as well as residual microbicide product
on the surface. This segmentation technique for OCT images has the potential to be readily adaptable to the
clinical setting for noninvasively defining the boundaries of the epithelium, enabling quantifiable assessment of
microbicide-induced damage in vaginal tissue. © 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1

.JBO.17.11.116004]
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1 Introduction
Recent studies suggest that noninvasive monitoring of epithelial
morphology and thickness measurement could be a reliable
biomarker for predicting susceptibility to genital infections,
diagnosing precancerous and cancerous changes, and assessing
tissue damage after topical drug use.1–5

To attempt to fight the HIV epidemic, microbicides, vaginal
products for prevention of acquisition of the infection, have been
developed. However, some of these products have been toxic to
the genital tract, and more specifically, the cervicovaginal tract,
and have increased or failed to prevent transmission of HIV.6–9

Colposcopic examination and histology of tissue biopsy have
been primarily used to assess the effects of microbicides on
the integrity of the cervicovaginal epithelium. Unfortunately,
colposcopy is insensitive to detect minute microbicide-induced
changes in the epithelium, and biopsy is invasive;6,7 in precli-
nical and clinical safety studies, these methods failed to identify
microbicides that cause toxicity to the cervicovaginal epithelium
and consequently increase risk of infection.

OCT is a high-resolution optical imaging technique10

recently used to perform noninvasive high-resolution cross-
sectional in vivo imaging of the cervix and vaginal tissue in pre-
clinical and clinical studies designed to assess microbicide
toxicity.2,3,5 OCT imaging of the cervicovaginal epithelium
provides depth-resolved information on morphological features
and thickness of the epithelial layer. Until now, microbicide-

induced changes in the morphology and thickness of vaginal
epithelium as detected by OCT imaging have been delineated
manually, a time-intensive process that often requires post-
processing of OCT images. An automatic segmentation algo-
rithm is needed to more efficiently differentiate the epithelial
layer from the underlying tissue structure for subsequent auto-
matic quantitative measurement of the degree of epithelium
injury.

Various segmentation approaches have been used for
cervicovaginal image analysis.11–14 Ji et al.11 applied a texture-
based technique to characterize cervical lesions in colposcopic
images, basing their method on statistical analysis. Luck et al.12

performed a segmentation method on confocal images of nuclei
to assist in cervical precancer detection. Their algorithm applied
three processing modules in series. First, they employed aniso-
tropic diffusion for edge preservation. Then, using Gaussian
Markov random field, they modeled the nuclei. Finally, a
Bayesian classifier was used to reduce the number of nonnuclei.
Greenspan et al.13 and Lotenberg et al.14 developed a multistage
automated system for segmenting images obtained from the
uterine cervix. Their approach was based on geometrical curva-
ture characteristics of cervical images, incorporating prior shape
information to improve the detection of the boundary of lesions.
However, all of the image segmentation techniques that have
been developed until now are designed to classify colposcopy
or confocal images of cervicovaginal tissue.

Applications of OCT imaging technique for visualization
of morphological features of ocular tissue have been well
established in the past two decades. More recently, various
approaches have been used for automated segmentation of
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well-defined retinal layers visualized with the aid of OCT
imaging.15–24 However, these techniques cannot be utilized
for segmentation of OCT images of vaginal tissue because of
variations in cervicovaginal epithelial thickness within images
and lower contrast between the epithelial layer and stroma.
Beyond the use of segmentation techniques for analyzing OCT
images of retina, Chitchian et al.25 proposed the development
of a more versatile segmentation approach to differentiate the
cavernous nerves from the prostate gland for nerve-sparing
prostate cancer surgery.

Despite the success that has been reported for use of various
segmentation methods for analysis of colposcopic images of
vaginal tissue as well as OCT retinal images, automatic detec-
tion of in-depth minute morphological changes in vaginal
epithelial layer and its thickness measurement require a different
segmentation approach. In this study, we apply a feature-based
segmentation algorithm using a nearest-neighbor classifier to
monitor minute microbicide-induced changes in the cervico-
vaginal epithelium.

2 Methods
In vivo OCT images of the vagina in a sheep model were
obtained using a clinical endoscopic OCT system (Imalux,
Cleveland, OH). Images were obtained after vaginal lavage at
baseline (before treatment) and 24 h after treatment with 5 mL
intravaginal 2% nonoxynol-9 (N9, Gynol II, Johnson & Johnson
Professional Products) or hydroxyethylcellulose placebo (HEC,
ReProtect, Baltimore, MD).3 N9 is an over-the-counter spermi-
cide that has been shown to disrupt and thin the epithelium and
increase suspectibility to HIV;2,5 therefore, we used this treat-
ment, known to cause epithelial toxicity, to test the performance
of our segmentation algorithm. Twenty representative OCT
images from three N9-treated sheep and one placebo-treated
sheep were selected for image processing. Vaginal biopsies
were obtained at the site of OCT imaging to confirm findings.
The biopsies were fixed in formalin and stained with hemat-
oxylin and eosin. Student t-test was used to compare epithe-
lial thickness measurements, and alpha of 0.05 was used for
significance.

2.1 Segmentation System

A block diagram of the segmentation system is provided in
Fig. 1(a). This is the system introduced by Chitchian and col-
leagues25,26 to differentiate the cavernous nerves from the pros-
tate gland. The following is a brief overview of the system.

The input image is first processed to form three feature
images. The image is then segmented into epithelial layer,
stroma, and background classes using a k-nearest-neighbors
(k-NN) classifier and the three feature images. Finally, N-ary
morphology is used for postprocessing. Another postprocessing
module is added to the segmentation system to differentiate the
epithelial layer using segmentation results [Fig. 1(b)]. The brief
descriptions of the feature images, classifier, and postprocessing
modules are provided below.

2.1.1 Gabor filter

The first feature image is generated by a Gabor filter with
impulse response hðx;yÞ,27

hðx; yÞ ¼ gðx; yÞej2πðUxþVyÞ; (1)

where

gðx; yÞ ¼ 1

2πσxσy
e
−1
2

�
x2

σ2x
þy2

σ2y

�
: (2)

The Gabor function is essentially a bandpass filter centered
about frequency ðU;VÞ with bandwidth determined by σx;σy.
The Gabor feature center frequency of (0.2,0.2) cycles/pixel
is applied with standard deviations of 3 and 6 in the x and y
directions, respectively, based on experimental observation of
minimum segmentation error and geometrical shape of epithe-
lial layer. The Gabor filter parameters are varied, so the Gabor
filter efficacy can be directly observed in the filtered images.

2.1.2 Daubechies wavelet transform

The second feature is generated by the eight-tap Daubechies
orthonormal wavelet transform to reduce the effect of noise.
The discrete wavelet transform (DWT) converts an image to its
wavelet representation.28 In a one-level DWT, the image c0 is
split into an approximation part c1 and detail parts d11, d

2
1,

and d31 for horizontal, vertical, and diagonal orientations, respec-
tively. The approximation part c1 is chosen as the second
feature.

2.1.3 Laws filter

The third feature is generated by the Laws feature extraction
method.29 Laws mask is convolved with the image to accentuate
its microstructure. Then, standard deviation computation is per-
formed after the Laws mask filtering to complete Laws feature
extraction.

The feature images, Gabor filter; Daubechies wavelet; and
Laws filter, are shown in Fig. 2(a) through 2(c).

2.1.4 k-nearest-neighbors classifier and N-ary morphology

k-NN is a method for classifying objects based on the k closest
training samples in the feature space. The algorithm is imple-
mented by training, parameter selection, and classification steps.
A different image is used for training. For parameter selection,
larger values of k typically reduce the effect of noise on the
classification, but make boundaries between classes less dis-
tinct. A parameter value of k ¼ 10 is empirically chosen
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Fig. 1 System block diagram. (a) Segmentation system. (b) Postproces-
sing module.
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(k varied from 4 to 12) for the present implementation of the
k-NN algorithm. Finally, the N-ary morphological postproces-
sing method is followed for eliminating small misclassified
regions.25

2.1.5 Postprocessing

Figure 1(b) shows the postprocessing module. A form of spatial
first-order differentiation is performed on the segmented image
to separate the epithelial layer.30 Then, a border is drawn

defining the epithelium using thresholding. By adding the result
to the input image, the output is concluded.

2.2 Segmentation Evaluation

For the quantitative evaluation of the proposed algorithm, the
error rate is calculated by:

Error ¼ No: of error pixels

No: of total pixels
; (3)

Fig. 2 Feature images. (a), Gabor filter. (b), Eight-tap Daubechies wavelet filter. (c), Laws filter followed by standard deviation.
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Fig. 3 Representative OCT images of the sheep vagina. (a), (d), (g), Original. (b), (e), (h), Segmented. (c), (f), (i), Output images.
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where

No: of error pixels ¼ No: of false − positives

þ No: of false − negatives: (4)

No: of error pixels is counted by comparing manually segmen-
ted images to the automatically segmented images.

3 Results
Figure 3(a), 3(d), and 3(g) shows representative OCT images of
normal vaginal mucosa with stratified squamous epithelium and
underlying stroma consisting of dense connective tissue that
supports cells and a network of vessels and nerves. The first
step of the algorithm provides the segmented images, sðx;yÞ
in Fig. 1(a), which are shown in Fig. 3(b), 3(e), and 3(h). Finally,
applying the postprocessing algorithm of Fig. 1(b) resulted in
the output images in Fig. 3(c), 3(f), and 3(i), with the epithelial
layer clearly delineated by the automated algorithm. Note that in
Fig. 3(f) and 3(i), there is a layer of fluid at the surface which the
algorithm correctly excludes as being part of the epithelium.

OCT images of damaged tissue at 24 h after a single dose
treatment of 2% N9 are shown in Fig. 4(a), 4(d), and 4(g).
Histology confirmed thinning and loss of the epithelium after

treatment with N9, as seen in Fig. 5. Figure 4(b), 4(e), and 4(h)
and 4(c), 4(f), and 4(i) show the segmented and the output
results of Fig. 4(a), 4(d), and 4(g), respectively. Thinned epithe-
lium is noted and outlined by the automated algorithm.

Comparing Fig. 3, which includes images at baseline, and
Fig. 4, which includes images obtained after treatment with 2%
N9, reveals that after treatment with 2% N9, the epithelium was
thinned and disrupted, as detected by the segmentation algo-
rithm. This is in agreement with the previous results in which
histology and manual measurements in OCT showed thinned
epithelium.3 Figure 5(a) and 5(b) shows representative histology
and OCT images obtained at the same site 24 h after treatment
with placebo. The images show intact epithelium. Figure 5(c)
and 5(d) shows representative histology and OCT images ob-
tained at the same site 24 h after treatment with N9. Disrupted,
thinned epithelium is noted in these images. Before treatment,
the epithelial thickness of the OCT images was 75� 6 and 70�
12 μm in the placebo and N9 groups, respectively. After treat-
ment, the epithelial thickness was unchanged in the placebo
group, measuring 77� 13 μm (p ¼ 0.79), and thinned in the
N9 group, measuring 48� 17 μm (p ¼ 0.02).

Figure 4(c) shows round structures above the epithelium
which the algorithm did not exclude, and we included them
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    (f) 
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Fig. 4 Representative OCT images of the sheep vagina after treatment with 2% N9. (a), (d), (g), Original. (b), (e), (h), Segmented. (c), (f), (i), Output
images.
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in measuring the error rate. The overall error rate for the
segmentation was 8.7%� 2.2%, showing that our technique
is robust based on an industry standard of error ≤10%.

4 Discussion
Noninvasive high-resolution imaging could provide direct
assessment of epithelial structure for evaluation of the effect
of candidate microbicides on the cervicovaginal mucosa. Our
group has recently demonstrated the use of OCT for assessing
the effects of BZK and N9 on the integrity of epithelial tissue
of cervicovaginal tract of macaques, sheep, and humans.2,3,5

In all of these studies, we have demonstrated that monitoring
and manual quantification of microbicide-induced changes in
epithelial integrity could be used as a biomarker for the assess-
ment of microbicide toxicity. In this study, an automatic seg-
mentation algorithm was developed for the identification of
the epithelium in OCT B-scans of the cervicovaginal tract. The
benefit of such an algorithm is to facilitate the process of defin-
ing the epithelium in cases where manual delineation of the
borders is time consuming and subjective. One application for
such a tool includes identification of the epithelium following
chemical perturbation by a topical microbicide. In this case,
epithelial thinning and disruption following treatment with a
chemical that damages epithelial tissue can be correlated to sus-
ceptibility to infection by a sexually transmitted infection (STI).4

The developed algorithm was successful in defining the
epithelium as evidenced by the small error rate when comparing
the algorithm with manual detection of epithelium. The algo-
rithm was successful even in the presence of confounding fac-
tors such as fluid or mucous on the surface of epithelium as seen
in Fig. 3(f) and 3(i). In these cases, the algorithm excluded these
low-reflectivity areas that were not part of the true epithelium. In
one case shown, segmentation resulted in small areas above the
epithelium to be defined [Fig. 4(c)]. These, however, can be

excluded as being part of the epithelium based on size and loca-
tion. The presence of these areas with intensity similar to epithe-
lium suggests that they are epithelial debris and tissue that has
been disrupted and is present in the mucus and fluid layer cover-
ing the epithelial surface. The proposed algorithm is the first
step toward developing an automated technique for the measure-
ment of epithelial thickness.

5 Conclusion
In this work, we developed an algorithm to automatically deline-
ate the vaginal epithelial layer. This algorithm for morphological
segmentation of the epithelial layer may prove useful for auto-
mated monitoring and detection of minute changes in the cervi-
covaginal epithelium after treatment with vaginal products using
high-resolution OCT imaging.

Acknowledgments
This research was supported in part by the National Institutes of
Health, National Institute of Allergy and Infectious Diseases,
NIAID (R21AI07606202/R33AI076062) and National Cancer
Institute, NCI (R01CA127429).

References
1. P. Escobar et al., “Optical coherence tomography as a diagnostic aid to

visual inspection and colposcopy for preinvasive and invasive cancer of
the uterine cervix,” Int. J. Gynecol. Cancer 16(5), 1815–1822 (2006).

2. K. Vincent et al., “Application of optical coherence tomography for
monitoring changes in cervicovaginal epithelial morphology in maca-
ques: potential for assessment of microbicide safety,” Sex. Transm.
Dis. 35(3), 269–275 (2008).

3. K. Vincent et al., “High resolution imaging of epithelial injury in the
sheep cervicovaginal tract: a promising model for testing safety of can-
didate microbicides,” Sex. Transm. Dis. 36(5), 312–318 (2009).

4. K. Vincent et al., “Benzalkonium chloride causes colposcopic changes
and increased susceptibility to genital herpes infection in mice,” Sex.
Transm. Dis. 37(9), 579–584 (2010).

5. K. Vincent et al., “Optical coherence tomography compared with col-
poscopy for assessment of vaginal epithelial damage: a randomized
controlled trial,” Obstet. Gynecol. 118(6), 1354–1361 (2011).

6. L. Van Damme et al., “Safety of multiple daily applications of
COL-1492, a nonoxynol-9 vaginal gel, among female sex workers,”
AIDS 14(1), 85–88 (2000).

7. WHO/CONRAD, Technical Consultation on Nonoxynol-9 WHO,
Geneva (2001).

8. L. Van Damme et al., “Lack of effectiveness of cellulose sulfate gel for
the prevention of vaginal HIV transmission,” N. Engl. J. Med. 359(5),
463–472 (2008).

9. P. Feldblum et al., “SAVVY vaginal gel (C31G) for prevention of HIV
infection: a randomized controlled trial in Nigeria,” PLoS One 3(1),
e1474 (2008).

10. D. Huang et al., “Optical coherence tomography,” Science 254(5035),
1178–1181 (1991).

11. Q. Ji, J. Engel, and E. Craine, “Texture analysis for classification of
cervix lesions,” IEEE Trans. Med. Imaging 19(11), 1144–1149 (2000).

12. B. Luck et al., “An image model and segmentation algorithm for reflec-
tance confocal images of in vivo cervical tissue,” IEEE Trans. Image
Process. 14(9), 1265–1276 (2005).

13. H. Greenspan et al., “Automatic detection of anatomical landmarks in
uterine cervix images,” IEEE Trans. Med. Imaging 28(3), 454–468
(2009).

14. S. Lotenberg, S. Gordon, and H. Greenspan, “Shape priors for segmen-
tation of the cervix region within uterine cervix images,” J. Digit.
Imaging 22(3), 286–296 (2009).

15. D. Fernandez, H. Salinas, and C. Puliafito, “Automated detection of
retinal layer structures on optical coherence tomography images,” Opt.
Express 13(25), 10200–10216 (2005).

(c) (d)

(a) (b)

500 µm 

500 µm 

Epithelium

Stroma

Epithelium

Stroma

Epithelium

Stroma

Epithelium

Stroma

Fig. 5 Representative histologic and OCT images of the sheep cervi-
covaginal epithelium after treatment with placebo (a) (b) or 2% N9
(c) (d).

Journal of Biomedical Optics 116004-5 November 2012 • Vol. 17(11)

Chitchian et al.: Automated segmentation algorithm for detection of changes in vaginal epithelial morphology . . .

http://dx.doi.org/10.1097/OLQ.0b013e31815abad8
http://dx.doi.org/10.1097/OLQ.0b013e31815abad8
http://dx.doi.org/10.1097/OLQ.0b013e31819496e4
http://dx.doi.org/10.1097/OLQ.0b013e3181dac410
http://dx.doi.org/10.1097/OLQ.0b013e3181dac410
http://dx.doi.org/10.1097/AOG.0b013e318238f563
http://dx.doi.org/10.1097/00002030-200001070-00010
http://dx.doi.org/10.1056/NEJMoa0707957
http://dx.doi.org/10.1371/journal.pone.0001474
http://dx.doi.org/10.1126/science.1957169
http://dx.doi.org/10.1109/42.896790
http://dx.doi.org/10.1109/TIP.2005.852460
http://dx.doi.org/10.1109/TIP.2005.852460
http://dx.doi.org/10.1109/TMI.2008.2007823
http://dx.doi.org/10.1007/s10278-008-9134-z
http://dx.doi.org/10.1007/s10278-008-9134-z
http://dx.doi.org/10.1364/OPEX.13.010200
http://dx.doi.org/10.1364/OPEX.13.010200


16. M. Szkulmowski et al., “Analysis of posterior retinal layers in spectral
optical coherence tomography images of the normal retina and retinal
pathologies,” J. Biomed. Opt. 12(4), 041207 (2007).

17. M. Haeker et al., “Automated segmentation of intraretinal layers from
macular optical coherence tomography images,” Proc. SPIE 6512,
6512141 (2007).

18. C. Ahlers et al., “Automatic segmentation in three-dimensional analysis
of fibrovascular pigmentepithelial detachment using high-definition
optical coherence tomography,” Br. J. Ophthalmol. 92(2), 197–203
(2008).

19. M. Garvin et al., “Intraretinal layer segmentation of macular optical
coherence tomography images using optimal 3-D graph search,”
IEEE Trans. Med. Imaging 27(10), 1495–1505 (2008).

20. T. Fabritius et al., “Automated segmentation of the macula by optical
coherence tomography,” Opt. Express 17(18), 15659–15669 (2009).

21. A. Mishra et al., “Intra-retinal layer segmentation in optical coher-
ence tomography images,” Opt. Express 17(26), 23719–23728
(2009).

22. G. Quellec et al., “Three-dimensional analysis of retinal layer texture:
identification of fluid-filled regions in SD-OCT of the macula,” IEEE
Trans. Med. Imaging 29(6), 1321–1330 (2010).

23. S. Chiu et al., “Automatic segmentation of seven retinal layers in
SDOCT images congruent with expert manual segmentation,” Opt.
Express 18(18), 19413–19428 (2010).

24. M. Mayer et al., “Retinal nerve fiber layer segmentation on FD-OCT
scans of normal subjects and glaucoma patients,” Biomed. Opt. Express
1(5), 1358–1383 (2010).

25. S. Chitchian, T. Weldon, and N. Fried, “Segmentation of optical coher-
ence tomography images for differentiation of the cavernous nerves from
the prostate gland,” J. Biomed. Opt. 14(4), 0440331 (2009).

26. S. Chitchian, Optical coherence tomography of the prostate nerves,
Ph.D. Thesis, UNC Charlotte (2010).

27. T. Weldon, W. Higgins, and D. Dunn, “Efficient Gabor filter design for
texture segmentation,” Pattern Recogn. 29(12), 2005–2015 (1996).

28. S. Chitchian, M. Fiddy, and N. Fried, “Denoising during optical coher-
ence tomography of the prostate nerves via wavelet shrinkage using
dual-tree complex wavelet transform,” J. Biomed. Opt. 14(1),
0140311 (2009).

29. W. Pratt, Digital Image Processing, Wiley, Hoboken, NJ (2007).
30. S. Chitchian et al., “Combined image-processing algorithms for

improved optical coherence tomography of prostate nerves,” J. Biomed.
Opt. 15(4), 0460141 (2010).

Journal of Biomedical Optics 116004-6 November 2012 • Vol. 17(11)

Chitchian et al.: Automated segmentation algorithm for detection of changes in vaginal epithelial morphology . . .

http://dx.doi.org/10.1117/1.2771569
http://dx.doi.org/10.1117/12.710231
http://dx.doi.org/10.1136/bjo.2007.120956
http://dx.doi.org/10.1109/TMI.2008.923966
http://dx.doi.org/10.1364/OE.17.015659
http://dx.doi.org/10.1364/OE.17.023719
http://dx.doi.org/10.1109/TMI.2010.2047023
http://dx.doi.org/10.1109/TMI.2010.2047023
http://dx.doi.org/10.1364/OE.18.019413
http://dx.doi.org/10.1364/OE.18.019413
http://dx.doi.org/10.1364/BOE.1.001358
http://dx.doi.org/10.1117/1.3210767
http://dx.doi.org/10.1016/S0031-3203(96)00047-7
http://dx.doi.org/10.1117/1.3081543
http://dx.doi.org/10.1117/1.3481144
http://dx.doi.org/10.1117/1.3481144

