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Abstract. Despite the remarkable progress that has been made to reduce global malaria mortality by 29% in the
past 5 years, malaria is still a serious global health problem. Inadequate diagnostics is one of the major obstacles
in fighting the disease. An automated system for malaria diagnosis can help to make malaria screening faster
and more reliable. We present an automated system to detect and segment red blood cells (RBCs) and identify
infected cells in Wright–Giemsa stained thin blood smears. Specifically, using image analysis and machine
learning techniques, we process digital images of thin blood smears to determine the parasitemia in each
smear. We use a cell extraction method to segment RBCs, in particular overlapping cells. We show that a com-
bination of RGB color and texture features outperforms other features. We evaluate our method on microscopic
blood smear images from human and mouse and show that it outperforms other techniques. For human cells,
we measure an absolute error of 1.18% between the true and the automatic parasite counts. For mouse cells,
our automatic counts correlate well with expert and flow cytometry counts. This makes our system the first one to
work for both human and mouse. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JMI
.5.4.044506]
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1 Introduction
Malaria is caused by parasites transmitted via bites of female
Anopheles mosquitoes. Parasite-infected red blood cells (RBCs)
lead to symptoms, such as fever, malaise, seizures, and coma, in
severe cases. Fast and reliable diagnosis and early treatment of
malaria is one of the most effective ways of fighting the disease,
together with better treatments and mosquito control.1 Over half
of all malaria diagnoses worldwide are done by microscopy1,2

during which an expert slide reader visually inspects blood
slides for parasites.3–5 This is a laborious and potentially error-
prone process, considering that hundreds of millions of slides
are inspected every year all over the globe.6 Accurate parasite
identification is essential for diagnosing and treating malaria
correctly. Parasite counts are used for monitoring treatment
effect, testing for drug-resistance, and determining disease
severity. However, microscopic diagnostics is not standardized
and depends heavily on the experience and expertise of the
microscopist. A system that can automatically identify and
quantify malaria parasites on a blood slide would offer several

advantages: it would provide a reliable and standardized inter-
pretation of blood films and reduce diagnostic costs by reducing
the workload through automation. Further image analysis on
thin blood smears could also aid discrimination between differ-
ent species and identification of Plasmodium parasite life stages:
rings, trophozoites, schizonts, and gametocytes.2,7,8

Although both thick and thin blood smears are commonly
used to quantify malaria parasitemia, many of the computer-
assisted malaria screening tools currently available rely on thin
blood smears.2,7,9 Thick smears are mainly used for rapid initial
identification of malaria infection but it can be challenging to
quantify parasites, where the parasitemia is high, and to deter-
mine species.10–20 On thin smears, parasite numbers per micros-
copy field are lower and individual parasites are more clearly
distinguishable from the background allowing more precise
quantification of parasites and distinction between different
species and parasite stages.21–32

We present an end-to-end automated detection system for
identifying and quantifying malaria parasites (P. falciparum)
in thin blood smears of both human and mouse. The main differ-
ence between human and mouse malaria parasites is that in
mice, all the stages of the parasite can be seen in the peripheral
blood, whereas in humans, the mature stages, such as
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trophozoites and schizonts, are mostly sequestered. Another dif-
ference is that P. falciparum has elongated, banana-shaped
gametocytes and takes around 10 to 12 days until complete
maturation, whereas the gametocytes in mouse are round and
maturate faster. This makes our software robust to different vis-
ual patterns of parasite stages. In resource-limited settings,
where research labs have no access to flow cytometry or
other cell counting means, our software can help expedite
research experiments on mice models, taking the manual cell
counting load from researchers. Moreover, flow cytometry is
too expensive for field-use and requires a technical person to
prepare, acquire, and analyze samples.

Our automated malaria parasite detection system consists of
four main steps, as illustrated in Fig. 1. In the first step, we pre-
pare the blood slides by applying staining and fixation before
collecting digitized images using a standard light microscope
with a top-mounted camera [Fig. 1(a)].

We develop an efficient RBC detection and segmentation
technique that uses a multiscale Laplacian of Gaussian (LoG)
cell detection method as input to an active contours-based seg-
mentation scheme named coupled edge profile active contours
(C-EPAC) to accurately detect and segment individual RBCs
and highly overlapping cells with varying annular and disk-
like morphologies and textural variations [Fig. 1(b)]. Ersoy
et al.33 presented C-EPAC to detect and track RBCs in videos
of blood flow in microfluidic devices under controlled oxygen
concentration. In this work, we evaluate the performance of
C-EPAC on stained blood slides for malaria diagnosis that is
new since RGB blood slide images have an entirely different
characteristic than blood flow videos and accurate segmentation
is essential to a successful cell classification. Furthermore, the
iterative voting-based cell detection method that is used in
C-EPAC is computationally expensive, which makes it not suit-
able for real-time processing. We use the multiscale LoG filter to
detect cells, where local extrema of the LoG response indicate
the approximate centroids of the individual cells. This provides
us with a high cell detection accuracy and fast processing.

Then, we use a combination of color and texture features to
characterize segmented RBCs. We develop an offline feature
evaluation framework using manually annotated cells to select
the most discriminative features, reduce feature dimensionality,
and improve classification performance [Fig. 1(c)]. The feature
evaluation results show that the combination of normalized red
green blue (NRGB) color information and joint adaptive median
binary pattern (JAMBP) texture features34 outperforms the other
color models and texture features. The color model picks up the
typical color information of stained parasites but is sensitive to
lab staining variations. Therefore, we add the complementary
JAMBP texture feature, which is invariant to staining variations,
so that we can detect the distinctive cell texture information
including the cytoplasm of parasites.

Finally, we use a linear support vector machine (SVM) to
classify infected and uninfected cells because of its simplicity,
efficiency, and easy translation to a smartphone [Fig. 1(d)].
We also evaluate and compare the SVM classifier results to
an artificial neural network (ANN) classifier and demonstrate
the comparable results.

The main contributions of this work are summarized as
follows:

• The fusion of LoG filter with C-EPAC enables us to effi-
ciently detect and segment individual RBCs, including
highly overlapping cells with varying annular and disk-
like morphologies and textural variations. We achieve a
superior cell detection F1 score of 94.5% and 95% for
human and mouse respectively, including a better perfor-
mance in splitting touching or overlapping cells. We com-
pute Jaccard indices of 92.5% for human cells and 81%
for mouse cells.

• We use a combination of low-level complementary fea-
tures to encode both color and texture information of
RBCs. Features are selected through an offline evaluation
framework to optimize the classification performance
using manually annotated cells.

Microscopy Imaging (thin smears)
staining, fixation and color normalization

Red Blood Cell Detection 
and Segmentation

Cell Feature Computation
(RGB Color + Texture)

Cell Classification

Detection and Segmentation
Evaluation

Classification Performance  
Evaluation

F
eature D

escriptor
T

able

Parasite
Quantification

(a) (b) (c) (d)

Feature Performance
Evaluation and Selection

Fig. 1 Our microscopy image analysis pipeline for counting malaria parasites. (a) Microscopy imaging of
blood slides using a standard light microscope with a top-mounted camera or smartphone. (b) RBC
detection and segmentation for thin smears. Evaluation will be performed in a standalone test-bed to
compute the precision and accuracy of the cell detection and segmentation. (c) Extraction of segmented
cells and computation of feature descriptors. The most discriminative features are selected through an
offline evaluation framework. (d) Labeling detected cells into infected and uninfected using classification
methods including SVM and ANN. Classification performance is evaluated separately to compute overall
system precision, recall, accuracy, and F1 score.
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• We are the first to present a robust system for both human
and mouse blood smears, including evaluation of the over-
all system performance in terms of precision, recall, accu-
racy, and F1 score. For human, we measure an average
absolute error of 1.18% between the true and the auto-
matic parasite counts. For mouse, we are the first to com-
pare automatic cell counts with flow cytometry counts,
measuring a high correlation.

• On average, our system can process about 100 cells∕s on
low-power computing platforms. This amounts to 20 s for
2000 cells, a number typically counted by a microscopist.
A trained microscopist would need 10 to 15 min to exam-
ine a blood slide with 2000 cells and would therefore be
much slower.

We organize the remainder of the paper as follows: Sec. 2
describes our image acquisition procedure and ground truth
annotation tool. Section 3 presents our cell detection and seg-
mentation process, followed by the object-level and the pixel-
level evaluation results. Feature performance evaluation and
selection are discussed in Sec. 4. In Sec. 5, we evaluate SVM
and ANN classification performances before we summarize
the main results and conclude the paper.

2 Materials and Procedures
We use blood slide images for both human and mouse provided
by the National Institute of Allergy and Infectious Diseases
(NIAID) to evaluate our system. All experiments are approved
by the NIAID Animal Care and Use Committee (NIAID
ACUC). The approved Animal Study Proposal (Identification
Number LIG-1E) adheres to the regulations of the Animal
Welfare Regulations and Public Health Service Policy on
Human Care and Use of Laboratory Animals.

2.1 Malaria Blood Smears

2.1.1 Human malaria infections

Whole blood from Interstate Blood Bank was processed to
remove all the white blood cells by passing it through
SEPACELL R-500 II leukocyte reduction filter from Fenwall.
The processed blood was used to culture Plasmodium falcipa-
rum in vitro in the conditioned media comprising of RPMI 1640.
The culture was maintained in a mixed gas environment with
5% O2, 5% CO2 balanced by nitrogen.

2.1.2 Mouse malaria infections

C57BL/6 female mice (7 to 10 weeks old) were obtained from
The Jackson Laboratories. Mice were infected with PbA by
injecting i.p. 1 × 106 PbA-infected RBCs obtained from
infected C57BL/6 mice.

2.1.3 Flow cytometry

Peripheral blood parasitemia was determined by flow cytometry
using a modification of a previously described method.35

Briefly, blood was obtained from mouse tail veins, fixed with
0.025% aqueous glutaradehyde solution, washed with 2 mL
PBS, resuspended, and stained with the following: the DNA
dye Hoechst 33342 (Sigma) (8 μM), the DNA and RNA
dye dihydroethidium (diHEt) (10 μg∕mL), the pan C57BL/6
lymphocyte marker allophycocyanin (APC)-conjugated Ab spe-
cific for CD45.2 (BioLegend), and the RBC marker APCCy7-
conjugated Ab specific for Ter119 (BD Pharmingen). Cells were
analyzed on a BD LSRII flow cytometer equipped with UV
(325 nm), violet (407 nm), blue (488 nm), and red (633 nm)
lasers. Data were analyzed using FlowJo software (Tree Star
Technologies). iRBCs were CD45.2−, Ter119þ, Hoechstþ, and
diHEtþ. Parasitemia was calculated as the number of iRBCs
divided by the total number of RBCs.

In the following sections, we will refer to the acquired slide
images and annotations as the human-NIAID and mouse-NIAID
datasets since the human and mouse blood slides have been
provided by NIAID.

2.2 Image Acquisition and Annotation

Blood slide images were acquired with the Zeiss Axio Imager,
an upright research microscope platform, using a magnification
of 63× and a standard Zeiss oil immersion lens. The dimension
of the images is 1380 × 1040, for both human and mouse, in
RGB color space. The average bounding box dimension of
an uninfected RBC is 40 × 40. We used only a single imaging
plane, and no focus stacking in particular. Figures 2(a) and 2(b)
illustrate two sample images from our mouse and human malaria
image datasets.

Cells were manually annotated by an expert as either infected
or uninfected, using our Firefly online annotation tool [Fig. 2(c),
firefly.cs.missouri.edu]. Firefly is a web-based ground-truth
annotation tool for visualization, segmentation, and tracking.
It allows point-based labeling or region-based manual segmen-
tation. We used Firefly’s interactive fast point-based labeling to
compute the actual infection ratio for each slide, which is

(a) Mouse-NIAID (b) Human-NIAID (c) Firefly annotation tool

Fig. 2 Examples of malaria images: (a) mouse-NIAID, (b) human-NIAID, and (c) labeling malaria micros-
copy slides using Firefly annotation tool: firefly.cs.missouri.edu
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computed as the ratio of the number of infected cells over the
total number of cells in the slide. Furthermore, we used region-
based manual segmentation of cells to evaluate cell detection
and segmentation results.

We evaluate the performance of features and classifiers on 70
human-NIAID images (14 slides × 5 images) and 66 images
from mouse-NIAID dataset that were uploaded to Firefly and
labeled pointwise by placing dots in different colors on infected
and uninfected cells. Our mouse-NIAID dataset contains two
sets of images named 2805 and 2808; each contains 33 images
(11 slides × 3 images). However, the cell boundaries annota-
tions that are required for segmentation evaluation are available
only for 10 images of human-NIAID and six images from
mouse-NIAID, which are used for cell detection and segmenta-
tion evaluation. These are our so-called fully annotated images.

3 Automatic Detection and Segmentation
of Red Blood Cells

RBCs detection and segmentation is the first challenging task in
our malaria parasites detection pipeline, see Fig. 1(b).2,36,37 The
main challenges are low image contrast, cell staining variations,
uneven illumination, shape diversities, size differences, texture
complexities, and particularly touching cells. Note that the
accuracies of cell detection and segmentation directly affect
the classifier performance; therefore, both have received
much attention in the literature. Different techniques have
been proposed including Otsu thresholding12,38–40 and water-
shed algorithms41–43 that are usually combined with morphology
operations to improve segmentation results and address texture
complexities; however, improper clump splitting and over-seg-
mentation are the main drawbacks of the methods based on
histogram thresholding and watershed transform.7 To address
the splitting of overlapping cells and avoid over segmentation
marker-controlled watershed algorithms,25,44,45 template match-
ing,32,46 Ada-boost,31 distance transform,47 and active contour
models21,48–50 have been presented, which perform poor to
segment highly overlapping cells.

In this paper, we fuse multiscale LoG filter withC-EPAC to
efficiently detect and segment individual RBCs and highly over-
lapping cells with varying annular and disk-like morphologies
and textural variations. C-EPAC33 is an extension of geodesic
active contour models that enables robust cell segmentation par-
ticularly when RBC densities are high and touching cells are
highly overlapping [Fig. 2(a)]. It begins with a voting-based
cell detection scheme followed by a C-EPAC segmentation
method. However, the iterative voting-based cell detection
method is computationally expensive, which makes it not

suitable for our real-time processing. We use the multiscale
LoG filter to detect cells, where local extrema of the LoG
response indicate the approximate centroids of the individual
cells. Figure 3 illustrates the LoG-based cell detection method
for a sample image from human-NIAID dataset. In the first step,
we compute the negative of the green channel and enhance its
contrast using histogram stretching (Îðx; yÞ). This makes the
cells appear lighter than the background [Fig. 3(b)]. Then,
we convolve the resulting image with the second derivative
of Gaussian kernels over the x and y axis, and compute the
Laplacian operators (L) at multiple scales σi:
EQ-TARGET;temp:intralink-;e001;326;631

Lxxðx; y; σiÞ ¼ Îðx; yÞ � ∂2

∂x2
Gðx; y; σiÞ;

Lyyðx; y; σiÞ ¼ Îðx; yÞ � ∂2

∂y2
Gðx; y; σiÞ;

Lðx; y; σiÞ ¼ Lxxðx; y; σiÞ þ Lyyðx; y; σiÞ; (1)

where Gðx; y; σiÞ ¼ 1
2πσ2i

e
−x2þy2

2σ2
i . The local minima of L across

scales indicate the approximate centroids of the individual
cells [Fig. 3(c)]. In the last step, we weigh the LoG blob
responses by the distance transform of the cell foreground
mask [Fig. 3(d)] to generate cell initial markers [Fig. 3(e)].
This provides us with a high cell detection accuracy and
meets the demands of real-time processing. After generating ini-
tial cell centroid markers, C-EPAC evolves a contour that starts
from the centroids and expands to the precise boundaries of the
cells. This method enables correct segmentation of both filled
and annular cells by forcing the active contours to stop on
specific edge profiles, namely on the outer edge of the RBCs.
During contour evolution, multiple cells are segmented simul-
taneously by using an explicit coupling scheme that efficiently
prevents merging of cells into clusters. The following section
briefly reviews the C-EPAC level-set active contour-based seg-
mentation algorithm.

3.1 C-EPAC Geodesic Active Contour Based
Segmentation Algorithm

The regular geodesic active contour method usually suffers from
early stops on irrelevant edges if not initialized properly. In order
to obtain an accurate cell segmentation and prevent getting
stuck at inner boundaries, C-EPAC33 is guided by a desired
perpendicular edge profile I, which effectively lets the curve
evolve through the inner boundary of the annular cell and
stop at the correct outer boundary. The edge profile is computed

(a) Malaria image (b) Negative of G channel (c) Cell blob detection (d) Cell centroids weights (e) Cell detection results

Fig. 3 Illustration of cell detection results using Laplacian of Gaussian LoG filter. (a) Original malaria
RGB color image, (b) negative of green channel being enhanced using histogram stretching,
(c) local extrema of the LoG response that indicate the approximate centroids of the individual cells,
(d) cell centroid weights using the distance transform of the cell foreground mask using Otsu threshold-
ing, and (e) cell initial markers using weighted LoG blob responses.

Journal of Medical Imaging 044506-4 Oct–Dec 2018 • Vol. 5(4)

Poostchi et al.: Malaria parasite detection and cell counting. . .



as the intensity derivative in the direction of evolving surface
normal, and the stopping function of C-EPAC, gd, is defined as
a decreasing function of the edge image gradient ∇I:
EQ-TARGET;temp:intralink-;e002;63;719

gdð∇IÞ ¼ 1 − H

�
−

∇ϕ
j∇ϕj · ∇I

�
;

HðxÞ ¼
�

1

0

if x > 0

elsewhere
; (2)

where H is the Heaviside function and ϕ is the level set function.
This sets gd to 1 at regions, where there is a bright-to-dark
transition (inner contour of annular cell) perpendicular to the
evolving level set, and to zero where there is a dark-to-bright
transition (outer contour of annular cell). Thus, it lets the active
contour evolve through the annular cells without getting stuck at
the inner boundaries since both filled and annular cells have
the same dark-to-bright profile on their outer boundaries in

grayscale. The speed function of C-EPAC curve evolution is
defined as follows:
EQ-TARGET;temp:intralink-;e003;326;730

∂ϕ
∂t

¼
�
1 − H

�
−

∇ϕ
j∇ϕj · ∇I

��
ðFc þKðϕÞÞj∇ϕj

þ ∇ϕ · ∇
�
1 − H

�
−

∇ϕ
j∇ϕj · ∇I

��
; (3)

where t is time, Fc is the constant balloon force that pushes
the curve inward or outward based on its sign, and K is the cur-
vature term. This approach can successfully find the precise
boundaries of a single cell. However, when used for segmenting
clustered RBCs, a single level set could produce a single,
lumped segmentation by merging all contours that expand
from several centroids. In order to avoid merging, C-EPAC con-
siders an N-level set approach by utilizing the spatial neighbor-
hood relationships between cells. The number of level sets (N) is

Original image Cell detection mask Delaunay triangulation graph Cell segmentation mask Superposed results

(a) Human-NIAID

(b) Human-NIAID (enlarged)

(c) Mouse-NIAID

(d) Mouse-NIAID (enlarged)

Fig. 4 The illustration of cell detection and segmentation results for the combination of LoG with C-EPAC
on a sample image from human-NIAID and mouse-NIAID. (a) Original image, (b) cell centroid detection
mask, (c) Delaunay triangulation graph, (d) cell segmentation mask, and (e) cell segmentation contours
superposed on the original image. The second and forth rows show the processing results enlarged for
the region marked by the yellow box.
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equal to the number of colors that can be assigned to cells using
a greedy graph coloring approach on the Delaunay graph of
the spatial cell neighborhoods so that no two neighbor cells
have the same color. We use six level set functions to cover
all the cells in an image. Figure 4 illustrates the LoG cell detec-
tion results (second column) followed by C-EPAC segmentation
results for two sample images from human-NIAID and mouse-
NIAID datasets. The second and forth rows show the processing
results enlarged for the region marked by the yellow box.

3.2 Red Blood Cell Detection and Segmentation
Evaluation

In this section, we evaluate and compare the performance of
our proposed cell detection and segmentation algorithm (LoG,
C-EPAC) with the most popular methods including: (i) Otsu-
thresholding combined with morphology operations (Otsu-
M),51 (ii) marker control watershed algorithm (MCW),52 and
(iii) Chan–Vese active contour cell segmentation approach
(Chan–Vese).53

3.2.1 Cell detection evaluation

The accuracy of cell segmentation relies on the performance of
the cell detection algorithm in detecting individual and touching
cells. Therefore, we first evaluate the performance of the LoG-
based cell detection algorithm and compare it to cell detection
results of Otsu-M and Chan–Vese active contour methods.
Figure 5(a) illustrates our greedy cell detection evaluation
approach for a sample human malaria microscopic image that
assigns the automatic cell detection results (rightmost image)
to its corresponding cell region in the ground-truth cell mask
(middle image). We evaluate the performance of cell detection
algorithms by computing the precision, recall, and F1 score
using the matching matrix.54 The F1 score is the harmonic
mean of precision and recall. The matching matrix is an error

table, where each row represents the automatically detected
cells and each column represents the manually detected cells
given by ground-truth annotations [Fig. 5(b)]. Therefore, true
positive (TP) is the cardinality of truly detected cells, false pos-
itive (FP) is the number of falsely detected cells, and false
negative (FN) is the number of missed cells that are not auto-
matically detected. In the context of cell detection evaluation,
true negative (TN) is indeed the whole background region
and is not considered in the calculation. Using the matching
matrix allows us to compute the precision and recall perfor-
mance of cell detection algorithms, where precision measures
the rate of truly detected cells (TP) over the total number of auto-
matically detected cells (TPþ FP), and recall reports the rate of
truly detected cells (TP) over the total number of cells using
ground-truth annotations (TPþ FN):

EQ-TARGET;temp:intralink-;e004;326;587Precision ¼ jTPj
jTPþ FPj ; Recall ¼ jTPj

jTPþ FNj : (4)

To combine the precision and recall performance of the
detection algorithm and report the overall performance, F1
score is computed as follows:

EQ-TARGET;temp:intralink-;e005;326;510F1 ¼ 2 ×
Precision × Recall

Precisionþ Recall
: (5)

Table 1 summarizes the cell detection performance evalu-
ation results for LoG, Otsu-M, and Chan–Vese methods com-
puted over 10 images from human-NIAID dataset that were
fully annotated by an expert. Table 2 reports the cell detection
evaluation results computed on six images from two slides from
mouse-NIAID (for mouse 2805 and 2808). The precision, recall,
and F1 score for LoG are clearly superior to Otsu-M and Chan–
Vese active contour method, outperforming them by almost 4%
on human-NIAID dataset and almost 8% on the mouse-NIAID

Malaria Image Manual Cell Contours Annotations Automatic Cell Detected Markers

TP

TP

FN

FP

(a) Cell Detection Evaluation Visualization

TP FP

FN TN

Cell No Cell

Detected

Not 
Detected

(b) Matching Matrix

Fig. 5 (a) Cell detection evaluation using a greedy algorithm that assigns each detected cell’s centroid
(rightmost image) to its corresponding cell region in the ground-truth cell annotationmask (middle image).
(b) Matching matrix.

Table 1 Performance evaluation of LoG cell detection compared to Otsu-M and Chan–Vese methods for 10 images from human-NIAID dataset
that were fully annotated by an expert. The reported precision, recall, and F1 score are the average results computed over 10 images and weighted
by the number of cells per image.

Method GT cells Detected cells TP FP FN Precision Recall F1

Otsu-M 1460 1253 1242 11 218 0.991 0.851 0.915

Chan–Vese 1460 1237 1226 11 234 0.991 0.840 0.908

LoG 1460 1328 1318 10 142 0.993 0.903 0.945
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dataset in terms of F1 score, when compared to Chan–Vese.
MCW is not listed in Tables 1 and 2, because it relies on LoG
cell detection method.

3.2.2 Cell segmentation evaluation

We compute the region-based Jaccard index55 for the four
discussed segmentation algorithms Otsu-M, MCW, Chan–Vese,
and C-EPAC algorithm to evaluate how accurately the RBC
boundaries are detected.

Jaccard index is one of the most popular segmentation evalu-
ation metrics that measures the similarity between a computed
segmentation mask A and a ground-truth annotation mask B.
The Jaccard similarity coefficient of two masks known as “inter-
section over union” is defined as follows:

EQ-TARGET;temp:intralink-;e006;63;453JaccardðA; BÞ ¼ jA ∩ Bj
jA ∪ Bj ¼

TP

TPþ FPþ FN
; (6)

where TP is the number of pixels in A that are truly detected as
cells, FP is the number of pixels in A that are falsely detected
as cells, and FN is the number of pixels in B that are not detected
as cells in A (missed).

Figure 6(a) shows the Jaccard index plotted for three slides
from human-NIAID dataset, and Fig. 6(b) shows the two slides
from mouse-NIAID dataset. Each column represents the average
of Jaccard index across three fields for each slide and method.
The red vertical bar on top of each column shows the standard
deviation.

Figure 6(a) shows that our cell segmentation method pro-
vides a slightly better or similar performance for most of the

fully annotated human-NIAID images achieving a weighted
average of Jaccard Index of 92.5%. The computed weighted
average of Jaccard index for Otsu-M is 91.4%, MCW is 88.4%,
and 92.5% for Chan–Vese. For mouse cells, the computed
weighted average of Jaccard index for Otsu-M is 80.4%,
MCW is 81.0%, Chan–Vese is 81.7%, and 81.0% for C-EPAC
[Fig. 6(b)].

Figure 7 elaborates the cell detection and segmentation
results for a sample image from human-NIAID dataset using
the four discussed methods. From these figures, we conclude
that our proposed LoG-CEPAC method provides superior
results in efficiently detecting and segmenting individual RBCs
and highly overlapping cells with varying annular and disk-like
morphologies. Figure 7(f) shows our LoG-CEPAC results super-
posed on the original image. The combined performance
improvements in cell detection and segmentation will lead to
an overall performance improvement for practical applications.

4 Cell Feature Evaluation and Selection
Once the cells have been detected and segmented from the
whole image, in the next step, we extract all segmented cells
and characterize them by their color and texture information
to distinguish infected cells from normal cells within a learning
framework. Figure 8 presents examples of extracted infected and
normal cells (first and second rows) for human-NIAID (first col-
umn) and mouse-NIAID (second and third column) datasets.

We have studied different features for describing normal and
abnormal cells, and evaluated their performance using SVM and
ANN classifiers to select the most discriminative feature set. We
evaluated the performance on both SVM and ANN to show that
the best feature set outperforms other features independent from

Table 2 Performance evaluation of LoG cell detection compared to Otsu-M and Chan–Vese methods for six images from mouse-NIAID dataset
that were fully annotated by an expert. The reported precision, recall, and F1 score are the average results computed over images and weighted by
the number of cells per image.

Method GT cells Detected cells TP FP FN Precision Recall F1

Otsu-M 2446 2351 2157 194 289 0.920 0.882 0.900

Chan–Vese 2446 2145 2002 143 444 0.933 0.818 0.871

LoG 2446 2416 2304 112 142 0.954 0.944 0.949
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Fig. 6 Cell segmentation performance evaluation of C-EPAC method compared to Otsu-M, MCW, and
Chan–Vese on three slides from (a) human-NIAID and two slides from (b) mouse-NIAID dataset using
Jaccard index. Each column represents the average of Jaccard index across three fields for each slide
and method. The red vertical bar on top of each column shows the standard deviation.
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(a) Thin Blood Smear Image (b) Otsu

(c) MCW (d) Chan-Vese

(e) LoG-CEPAC (f) LoG-CEPAC results superposed on the image

Fig. 7 Illustration of cell detection and segmentation evaluation results using (a) thin blood smear image,
(b) Otsu-M, (c) MCW, (d) Chan–Vese, (e) LoG-CEPAC, and (f) LoG-CEPAC, where green represents
the truly detected cells (TP) and red represents missed cells (FN).
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(a) Human-NIAID (b) Mouse-NIAID (2805) (c) Mouse-NIAID (2808)

Fig. 8 Examples of extracted infected (first row) and normal cells (second row) for (a) human-NIAID,
(b) mouse-NIAID dataset 2805, and (c) mouse-NIAID 2808.
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the classifier used. In feature evaluation experiments, we used
ground truth annotations to extract cells and decouple the per-
formance of features and classifier from our automatic segmen-
tation results. The color feature set includes YCbCr, normalized
green channel from RGB color model (NG), a combination of
three discriminative normalized channels from different color
models: GRGB, SHSV, LLAB (NGSL), and NRGB. We also con-
sider texture features to capture information about the appear-
ance changes of the parasite during different stages of its life
cycle in the human body. We evaluate the performance of linear
binary pattern56 and JAMBP34 features. Table 3 lists the studied
features and histogram descriptor’s dimension. For example, the
NRGB is a composite of the three normalized color channels
RN , GN , and BN , each represented by a 16-bins histogram:
EQ-TARGET;temp:intralink-;e007;63;376

RN ¼ R
Rþ Gþ B

; GN ¼ G
Rþ Gþ B

;

BN ¼ B
Rþ Gþ B

: (7)

To select the most discriminative feature set, we measure
precision, recall, accuracy, and F1 score of SVM and ANN
classifiers using the described features in Table 3. The accuracy
is computed as follows:

EQ-TARGET;temp:intralink-;e008;63;264Accuracy ¼ jTPþ TNj
jTPþ FPþ TNþ FNj : (8)

TP is the number of cells that are truly classified as infected
and TN is the number of cells that are truly identified as normal
cells. FP and FN report the number of cells that are being
misclassified.

Tables 4 and 5 present the average performance evaluation
results of SVM and ANN classifiers on 1615 manually seg-
mented cells from the human-NIAID dataset using 10-fold
cross-validation. The combination of color and texture features
improves the F1 score of the SVM classifier from 88% to 93%,
and the F1 score of the ANN classifier from 83% to 91%.
Tables 6 and 7 report the same performance evaluation on
1551 manually segmented cells from the mouse-NIAID dataset
using 10-fold cross-validation. An average high F1 score of
95% is achieved for the SVM classifier and 96% for the ANN

classifier using the combination of NRGB and JAMBP. The
tables show that a combination of NRGB and JAMBP performs
well on both human and mouse datasets. Therefore, for every
extracted cell, we compute a feature vector of size 372 including
a 48-bins histogram of NRGB and a JAMBP texture feature
vector of size 324.

Table 3 Features and dimensions.

Feature
Descriptor
dimension Remarks

YCbCr 10 × 3 Y is the luminance, Cb is the
blue-difference and Cr is the
red-difference chroma components.

LBP 18 Local binary pattern

NG 16 Normalized green channel

NGSL 16 × 3 Normalized green channel from
RGB, saturation from HSV and
L channel from LAB

NRGB 16 × 3 NRGB channel

NRGB +
JAMBP

16 × 3þ 324 Combination of NRGB color
and JAMBP texture features

Table 4 Feature performance evaluation using SVM classifier and
ground-truth segmentation on human-NIAID.

SVMðhuman-NIAIDÞ

TP TN FP FN Precision Recall Accuracy F1

YCbCr 83 1489 37 6 0.69 0.93 0.97 0.79

LBP 73 1317 209 16 0.26 0.82 0.86 0.39

NG 86 1427 99 3 0.46 0.97 0.94 0.63

NGSL 71 1495 31 18 0.70 0.80 0.97 0.74

NRGB 81 1511 15 8 0.84 0.91 0.99 0.88

NRGB +
JAMBP

83 1519 7 6 0.92 0.93 0.99 0.93

Table 5 Feature performance evaluation using ANN classifier and
ground-truth segmentation on human-NIAID.

ANNðhuman-NIAIDÞ

TP TN FP FN Precision Recall Accuracy F1

YCbCr 67 1509 22 17 0.75 0.80 0.98 0.77

LBP 31 1514 58 12 0.35 0.72 0.96 0.47

NG 61 1500 28 26 0.69 0.70 0.97 0.69

NGSL 72 1507 17 19 0.81 0.79 0.98 0.80

NRGB 76 1508 13 18 0.85 0.81 0.98 0.83

NRGB +
JAMBP

81 1517 8 9 0.91 0.90 0.99 0.91

Table 6 Feature performance evaluation using SVM classifier and
ground-truth segmentation on mouse-NIAID.

SVMðmouse-NIAIDÞ

TP TN FP FN Precision Recall Accuracy F1

YCbCr 779 652 42 78 0.95 0.91 0.92 0.93

LBP 813 666 28 44 0.97 0.95 0.95 0.96

NG 757 620 74 100 0.91 0.88 0.89 0.90

NGSL 811 668 26 46 0.97 0.95 0.95 0.96

NRGB 817 662 32 40 0.96 0.95 0.95 0.96

NRGB +
JAMBP

821 640 54 36 0.94 0.96 0.94 0.95
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5 Cell Classification and Labeling
In the last step of our processing pipeline, we use a SVM
classifier with a linear kernel, a two-layer ANN feedforward
network with a sigmoid transfer function in the hidden layer,
and a softmax transfer function in the output layer to classify
cells into two classes: infected and uninfected. We evaluate

the system pipeline performance on a set of 14 thin blood slides,
each containing 5 images, from human-NIAID dataset (for
a total of 70 images and about 10,000 RBCs) using a 10-fold
cross-validation scheme to train and test the classifiers. In each
fold, 63 images are used for training and 7 images are used for
testing.

Table 8 summarizes the average precision, recall, accuracy,
and F1 score performance of the SVM and ANN classifiers. The
SVM classifier achieves 98% accuracy in correctly identifying
infected cells with a sensitivity (recall) of 91% and F1 score of
87%, which are comparable to the ANN classifier with 99%
accuracy and F1 score of 90%.

To quantify the malaria infection, we compute the infection
ratio as follows:

EQ-TARGET;temp:intralink-;e009;326;598Infection ratio ¼ Number of infected cells

Total number of cells
: (9)

Figure 9 shows a comparison of the actual infection ratio
with the automatically computed infection ratio based on
the SVM classifier output, which we averaged over 10 folds.
Figure 9(a) presents the correlation between automated and
manually computed infection ratios for the 70 images of
human-NIAID dataset. We obtain an average absolute error
of 1.18%. Figure 9(b) shows the Bland–Altman plot with
a mean signed difference between the automatically computed
infection ratio and the manual infection ratio of 0.4%, with
RPC ¼ 0.03 [reproducibility coefficient (1.96 × SD)].

6 System Evaluation and Comparison to
Commercial Flow Cytometry

To evaluate our system systematically, we monitored the malaria
infections of two mice identified as 2805 and 2808, during
a course of several days. We compared the counts of human
experts with the automatic counts provided by our system. In
addition, we compared our counts with automatic counts pro-
duced by flow cytometry and with the counts of a layperson,

Table 7 Feature performance evaluation using ANN classifier and
ground-truth segmentation on mouse-NIAID.

ANNðmouse-NIAIDÞ

TP TN FP FN Precision Recall Accuracy F1

YCbCr 794 620 63 78 0.93 0.91 0.91 0.92

LBP 774 607 83 91 0.90 0.89 0.89 0.90

NG 809 634 48 64 0.94 0.93 0.93 0.94

NGSL 796 630 61 65 0.93 0.92 0.92 0.93

NRGB 812 651 45 47 0.95 0.95 0.94 0.95

NRGB +
JAMBP

828 653 29 45 0.97 0.95 0.95 0.96

Table 8 SVM and ANN classifiers performance evaluation using
NRGB color and JAMBP texture features on 70 images from
human-NIAID dataset.

Method Cells TP TN FP FN Precision Recall Accuracy F1

ANN 8630 469 8054 62 45 0.88 0.91 0.99 0.90

SVM 8630 469 8018 98 45 0.83 0.91 0.98 0.87

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

GT infection ratio (GTR)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

A
ut

o 
in

fe
ct

io
n 

ra
tio

 (
A

ut
oR

)

(a) Correlation Plot

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13 0.14

Mean GTR & AutoR

-0.05

-0.045

-0.04

-0.035

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

A
ut

oR
 -

 G
T

R

0.03 (+1.96SD)

0.00 [p=0.03]

-0.03 (-1.96SD)

(b) Bland-Altman Plot

Fig. 9 (a) Correlation between automated (y -axis) and manually computed (x -axis) infection ratios for
the 70 images of human-NIAID dataset. The straight red line indicates perfect matches. We obtain an
average absolute error of 1.18%. (b) The Bland–Altman plot shows the mean signed difference between
the automatically computed infection ratio and the manual infection ratio. We report an average error of
0.4% with RPC ¼ 0.03 [reproducibility coefficient (1.96 × SD)].
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who received a brief introduction into the art of cell counting by
expert slide readers. Figures 10(a) and 10(b) show these com-
parisons for mouse 2805 and mouse 2808, respectively. Mouse
2805 has been monitored for 10 days and mouse 2808 for
8 days. In terms of manual counts, Figs. 10(a) and 10(b) show
that the layperson’s counts are very close to the expert counts,
suggesting that a layperson, after a brief training, can produce
about the same quality counts as an expert slide reader. Another
observation for Fig. 10 is that there is a noticeable difference
between the expert counts and the counts produced by flow
cytometry. With a few exceptions, the flow cytometry counts
are usually higher than the expert counts. They can be more
than twice as high for some days, suggesting that flow cytometry
counts and human counts are not interchangeable. However, we
observe a strong correlation between manual counts and flow
cytometry counts, in particular, for mouse 2805 in Fig. 10. In
terms of automatic counts, the NRGB feature performs almost
identical to the combination of NRGB and JAMBP for mouse
2805 (black and green curves). However, for mouse 2808, the
combination of NRGB with JAMBP outperforms NRGB, as the
counts are closer to the expert and flow cytometry counts. We
attribute this to the poorer slide quality for mouse 2808, where
staining artifacts can more easily lead to FPs when using NRGB
alone. The inclusion of texture features, such as JAMBP, helps

to discriminate between actual parasites and stain noise. The
latter can lead to FPs when using only color features, such as
NRGB. Comparing automatic counts with expert and flow
cytometry counts, Figs. 10(a) and 10(b) show that our system
is over-counting on days 1 and 2 for mouse 2805, and on
days 1, 10, and 13 for mouse 2808. However, on the other
days, our system is at least as close to flow cytometry as the
expert counts, if not closer. Except for the days we are over-
counting, the automatic counts are reasonably well correlated
with the expert and flow cytometry counts. We again attribute
the over-counting to the poor slide quality and staining artifacts,
which result in FPs.

7 Conclusion
We have developed an image analysis system that can automati-
cally quantify a malaria infection in digitized images of thin
blood slides. The system’s image processing pipeline consists
of three major steps: cell segmentation, feature computation,
and classification into infected and uninfected cells. The
most challenging task of the pipeline is the segmentation
phase, which needs to be fast and accurate in splitting any
clumped cells to avoid miscounting and misclassification in
the last stage of the pipeline. We use a combination of multiscale
LoG filter and C-EPAC level-set scheme to detect and segment
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Fig. 10 A comparison of automatic counts, using NRGB and JAMBP features, with manual expert counts
(red), layperson counts (blue), and flow cytometry counts (pink) for (a) mouse 2805 and (b) mouse 2808.

Journal of Medical Imaging 044506-11 Oct–Dec 2018 • Vol. 5(4)

Poostchi et al.: Malaria parasite detection and cell counting. . .



cells, which is capable of identifying individual cells in a
clumped cell cluster of touching cells and outperforms other
methods. For feature computation, we use a combination of
NRGB and JAMBP texture features. The color feature picks
up the typical color of stained parasites and the texture feature
detects cell texture information including the cytoplasm of para-
sites. This feature combination works well in our experiments
and helps to avoid FPs due to staining artifacts. In the classifi-
cation step, we evaluate the linear SVM and ANN classifiers
performance on human and mouse slides. The ANN classifier
achieves F1 score of 90% in correctly identifying infected
cells on human-NIAID dataset. We measure an average absolute
error of 1.18% between the true and the automatic parasite
counts for human. For mouse cells, our automatic counts
correlate well with expert and flow cytometry counts, making
this the first system that works well for both human and
mouse. Compared to human counting, our system is much faster
and can process 100 cells∕s on low-power computing platforms.
The system provides a reliable and standardized interpretation of
blood films and lowers diagnostic costs by reducing the work-
load through automation. Furthermore, the implementation of
the system as a standalone smartphone app is well-suited for
resource-poor malaria-prone regions. Future image analysis
on blood smears could also help in discriminating parasite
species and identifying parasite life stages.
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