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Abstract. All optical systems that operate in or through the atmosphere
suffer from turbulence induced image blur. Both military and civilian sur-
veillance, gun sighting, and target identification systems are interested in
terrestrial imaging over very long horizontal paths, but atmospheric turbu-
lence can blur the resulting images beyond usefulness. This work explores
the mean square error (MSE) performance of a multiframe blind deconvo-
lution (MFBD) technique applied under anisoplanatic conditions for both
Gaussian and Poisson noise model assumptions. The technique is evalu-
ated for use in reconstructing images of scenes corrupted by turbulence in
long horizontal-path imaging scenarios. Performance is evaluated via the
reconstruction of a common object from three sets of simulated turbulence
degraded imagery representing low, moderate, and severe turbulence
conditions. Each set consisted of 1000 simulated turbulence degraded
images. The MSE performance of the estimator is evaluated as a function
of the number of images, and the number of Zernike polynomial terms
used to characterize the point spread function. A Gaussian noise model-
based MFBD algorithm reconstructs objects that showed as much as 40%
improvement in MSE with as few as 14 frames and 30 Zernike coefficients
used in the reconstruction, despite the presence of anisoplanatism in the
data. An MFBD algorithm based on the Poisson noise model required a
minimum of 50 frames to achieve significant improvement over the aver-
age MSE for the data set. Reconstructed objects show as much as 38%
improvement in MSE using 175 frames and 30 Zernike coefficients in the
reconstruction. © The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.52.8.083108]
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1 Introduction
The goal of this article is to use a parameterized, multiframe
blind deconvolution (MFBD) technique to reconstruct an
object estimate from a set of simulated anisoplanatic images,
and examine the mean square error (MSE) performance of
the estimator as the parameters are varied. This article exam-
ines estimator performance as the number of frames used in
the estimation is varied, and as the number of Zernike poly-
nomial coefficients used to characterize the phase term of the
point spread function are varied under the assumption of both
Gaussian and Poisson noise distributions.

Every optical system using light that has propagated any
appreciable distance through the atmosphere will suffer, to
some degree, from turbulence induced phase aberrations.
In addition to phase errors at the aperture, light propagating
over longer distances or through stronger turbulence, will
cause images to suffer from anisoplanatic, and possibly scin-
tillation effects as well. Often the image blur induced by
these phase aberrations is the limiting factor in the ability
to recognize details of objects in the scene.

Under isoplanatic conditions, the light coming from all
points in the scene can be assumed to experience similar tur-
bulence induced aberrations. The isoplanatic angle θ0 is the

angular separation between point sources for which the
phase changes at the aperture can be considered to be sig-
nificantly decorrelated. However, in many near-surface sur-
veillance imaging scenarios, it is reasonable to assume that
the field of view of the imaging system will subtend an angle
wide enough that this assumption will not be valid. In this
case, we describe the viewing as anisoplanatic. The longer
the optical path length and the stronger the turbulence, the
more severe these aberrations become, and the isoplanatic
angle decreases. Increasing the size of the aperture will
not improve the quality of the image under anisoplanatic
conditions. Unless the seeing conditions are very favorable,
anisoplanatism will play a role in most practical horizontal
imaging situations. Some technique for reducing the effects
of anisoplanatism is desired.

A variety of techniques have been devised to correct the
turbulence induced phase aberrations in vertical imaging
applications. Adaptive optic strategies using wave front sen-
sors to control deformable mirrors have been used in celestial
observation systems for many years.1 Techniques that exploit
deliberately imposed, known phase diversity2–4 have also
been used with some success. Paxman and Schulz explored
this problem by creating phase diversity across multiple
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speckle images. This technique uses two simultaneous mea-
surements—an in-focus image and another with a known
degree of defocus applied before the other measurement is
taken.5 This technique is limited to fields of view that do
not appreciably exceed the isoplanatic angle existing at the
moment the image was captured, require substantial hard-
ware, and divide photons between two detectors. Post-detec-
tion processing of wide field of view images captured with
short-exposure times is another alternative. Fraser et al.
described a technique for point-by-point registration of ani-
soplanatic speckle images to reduce motion blur and prepare
the images for other deconvolution strategies.6 Ayers
and Dainty pioneered the application of an iterative blind
deconvolution technique to a single image degraded by
atmospheric turbulence.7 Their method relied on the enforce-
ment of positivity and finite support constraints on the object
estimate. Schulz extended that method to include multiple
input images and developed a penalized-maximum-likeli-
hood algorithm to avoid the trivial solution that incorrectly
concludes that the optical system’s point spread function
(PSF) is a Dirac delta function and the most likely object
estimate is the observed turbulent image.8 Hybrid hard-
ware–software strategies offer the potential to produce on-
the-fly estimates of scenes, but require substantial investment
in both hardware and software to produce results.9 Bos
and Roggemann10 have reported the use of software
reconstruction techniques using the bi-spectrum method in
nearly real time. The use of these strategies to surveillance
imaging is largely unexplored.

This article describes a method of jointly estimating
object intensities and imaging system PSFs from simulated
anisoplanatic images that have been corrupted by atmos-
pheric turbulence. The image model that forms the founda-
tion of this estimator is that of a linear shift invariant PSF
and a deterministic object. It is conjectured that anisoplanatic
effects of the turbulent atmosphere are compensated for by the
estimator by reconstructing a spatialy averaged PSF. Bos’s11

work using cross-spectrum and bi-spectrum phase reconstruc-
tions points to this potential solution. Carrano12 has also pub-
lished a work in this area that neglects the anisoplanatic
effects. This investigation will be the subject of another
article. The method developed here is applied to three sets
of images with varying levels of turbulence, and the effec-
tiveness is assessed by calculating the MSE between the
resulting recovered object and the diffraction limited image.

We find that the MFBD reconstructed objects show sig-
nificant improvement in MSE compared to the average MSE
between all the images in a data set and the associated dif-
fraction limited image. The improvement in MSE was 40%
for the low turbulence case, 25% for moderate turbulence,
and 36% for severe turbulence case. We also provide an esti-
mate of the optimum number of images and Zernike coeffi-
cients to use in the future work with MFBD reconstructions.

The remainder of this article is organized as follows. In
Sec. 2, we discuss the horizontal imaging problem and
briefly describe the simulation that produced the data sets
used in the study. In Sec. 3, the object recovery methods for
the Gaussian case is described followed by the Poisson case.
In Sec. 4, the results of both the Gaussian and Poisson case
reconstructions are presented. Finally, some thoughts on
processing and conclusions regarding the technique are pro-
vided in Sec. 5.

2 Background
We now describe the MFBD algorithm for the Gaussian and
Poisson noise models. In MFBD, the input is a set of mea-
sured noisy and turbulence corrupted images. In a stack of K
turbulence corrupted, but measurement noise-free images,
the k’th image can be described as the convolution of an
unchanging object in space convolved with the PSF of the
optical system sð~xÞ. Mathematically, this can be expressed
as13

gkð~xÞ ¼ oð~xÞ⋆skð~xÞ; (1)

where ⋆ represents the two-dimensional (2-D) convolution
operator and ~x is a 2-D coordinate in object space. The
expression gkð~xÞ represents the k’th noiseless image, fð~xÞ is
the irradiance distribution of the object in the object plane,
and skð~xÞ is the k’th incoherent PSF.

The PSF is the modulus squared of the coherent impulse
response jhkð~xÞj2, which is in turn the inverse Fourier trans-
form of the generalized pupil function. Mathematically, these
relationships are given by

skð~xÞ ¼ jhkð~xÞj2 ¼ jF−1½Hkð~uÞ�j2; (2)

where ~u is a 2-D coordinate in pupil space. The generalized
pupil function is described by

Hkð~uÞ ¼ jHð~uÞjejϕkð~uÞ; (3)

where ϕkð~uÞ is the combination of phase aberrations caused
by the differences in path length and diffraction in the im-
aging system. This aberration function can be expressed
as the weighted sum of a set of orthonormal functions

ϕ̃kð~u; ~αÞ ≈
XJ
j¼1

αj;kϕjð~uÞ; (4)

where the coefficients αj;k serve to weight the basis functions
ϕj. Zernike polynomials are a common set of orthonormal
basis functions used to characterize both fixed and random
aberrations in imaging systems and are frequently used to
describe turbulence effects on imaging.14 We will assume
that the simulated images dkð~xÞ are a series of short-exposure
images where the object in the scene remains constant, but
the phases ϕkð~uÞ associated with each PSF are random in
each image frame in the stack. This lets us express the gen-
eralized pupil function as a function of both the spatial fre-
quency and the vector of Zernike coefficients ~αj;k

Hkð~u; ~αj;kÞ ¼ jHð~uÞjejϕkð~u;~αÞ; (5)

which allows us to approximate the k’th aberrated PSF as a
weighted vector of Zernike polynomials

skð~x; ~αÞ ¼ jhkð~x; ~αÞj2 ¼ jF−1½Hkð~u; ~αÞ�j2: (6)

In nonblind deconvolution problems, the data collected,
dkð~xÞ, is used with a known PSF skð~xÞ to determine fð~xÞ.
In blind deconvolution, we are given dkð~xÞ and use that infor-
mation to estimate both the object, fð~xÞ and the PSF skð~xÞ
jointly. There is no closed form solution to the problem of
jointly estimating an object and the aberration parameters for
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each image frame. Hence, an iterative approach is needed to
find the object pixel intensities and Zernike coefficients that
are most likely to have resulted in the simulated data for each
image. In the next section, we describe two such approaches,
one based on a Gaussian noise model and other based on a
Poisson noise model.

2.1 Data Set

It is common to simulate the effects of the turbulent atmos-
phere by placing layers of uniform turbulence between the
object and the imaging system. The data set consisting of
1000 simulated turbulent images used in this article was cre-
ated using an image common in the literature. Five
Kolmogorov phase screens were generated. The image was
propagated over a distance of 1000 m. Light from each
object pixel was projected through the phase screens, in
turn, at 200-m separations using a geometric optics approach
to account for the effects of anisoplanatism. Phase errors
accumulating from each screen are combined at the pupil
to create a turbulence degraded PSF. Each of the PSFs is
then scaled by the object pixel intensities to create a turbu-
lence corrupted image for low, moderate, and severe turbu-
lence conditions. Parameters for the simulated imaging
system include a 10-cm aperture with a 358 × 358 pixel
detector and a 0.7-mm pixel pitch. A fuller description of
the simulator used to create this data set is available in
Ref. 11.

For the conditions simulated here, a single pixel in the
simulated imaging system captures 2.79 μrad. Expressing
the θ0 values for the low, medium, and severe turbulence
conditions of the simulation, we see in Table 1 that the iso-
planatic patch covers 4, 3, and 2 pixels in the simulated im-
aging system (Fig. 1).

2.2 Gaussian Noise Model MFBD

Extending the image formation equations described previ-
ously in Eqs. (1)–(4), we can describe a set of images that
have been corrupted by additive Gaussian noise

dkðxÞ ¼ gkð~xÞ þ nkð~xÞ ¼ fð~xÞ × skð~x; ~αkÞ þ nkð~xÞ; (7)

where nkð~xÞ represents an additive noise term characterized
by an independent, identically distributed Gaussian random
variable with 0 mean and variance σ2. Using a Gaussian
measurement noise model, each image dkð~xÞ is a random
variable with a Gaussian probability density function. The
pdf of dkð~xÞ is parameterized by the object intensities fð~xÞ
and the vector of aberration weighting coefficients ~αk

p½dkð~xÞ;fð~x;~αkÞ� ¼
1

ð2πs2nÞ1∕2
exp

�
−
½dkð~xÞ; ~αkÞ− gkð~xÞ�2

2πσ2n

�

(8)

and the likelihood of the complete data set consisting of all
the pixel intensities in all the corrupted images is given by

p½fdkð~xÞg; fð~x; ~αkÞ� ¼
YK
k¼1

Y
x∈χ

1

ð2πσ2nÞ1∕2

× exp

�
−
½dkð~xÞ − gkð~xÞ�2

2πσ2n

�
: (9)

The natural log of Eq. (9) is taken in order to make the
analysis more tractable, resulting in a summation rather than
products and neglecting a constant term, yields the log-like-
lihood function

L½fð~x; ~αkÞ� ¼ −
XK
k¼1

X
xϵχ

½dkð~xÞ − gkð~xÞ�2: (10)

Although an analytic form of the Hessian is not required,
the limited-memory Broyden–Fletcher–Goldfarb–Shanno
(L-BFGS) optimization used to maximize the likelihood
function Eq. (10) is more efficient if an analytic form of
the gradient is provided. With respect to the pixel intensities,
the gradient of the Gaussian log-likelihood function can be
represented as

∂
∂f

L½fð~x; ~αÞ� ¼ 2
XK
k¼1

X
xϵχ

½dkð~xÞ − gkð~xÞ�
∂
∂f

gkð~xÞ (11)

Table 1 Atmospheric simulation turbulence conditions.

Atmospheric turbulence parameters

Severity
condition

C2
N

(mð−2∕3Þ)
r 0 spherical
case (cm)

θ0
(μrad)

θ0
(pixels)

Low 2.25 × 10−14 3.33 10.8 4

Moderate 3.75 × 10−14 2.45 7.75 3

High 5.25 × 10−14 2.01 6.63 2

Fig. 1 Horizontal imaging simulator output. Single image representa-
tive samples of the horizontal image simulator output: (a) diffraction-
limited image, (b) image for C2

N ¼ 2.25 × 10−14 mð−2∕3Þ, (c) image for
3.75 × 10−14 mð−2∕3Þ, and (d) image for 5.25 × 10−14 mð−2∕3Þ.
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and the gradient with respect to the Zernike coefficients is

∂
∂~α

L½fð~x; ~αÞ� ¼ 2
XK
k¼1

X
xϵχ

½dkð~xÞ − gkð~xÞ�
∂
∂~α

gkð~xÞ: (12)

2.3 Poisson Noise Model MFBD

Not all images are taken in full daylight. At low light levels,
photon noise may dominate image frames. This is often char-
acterized by a speckled quality of the images. Photon noise
in images is described by modeling the number of photons
detected in an image frame at each pixel as a Poisson random
variable with a mean photon count rate λ, which is propor-
tional to average pixel intensity. For this simulation, the
number of photons detected at each detector pixel is assumed
to be an independent, Poisson distributed random variable
with a mean rate given by a noiseless diffraction-limited
image gð~xÞ. The random nature of the PSF gð~xÞ is neglected.
The probability of detecting dkð~xÞ photons at a specific pixel
location is given by

p½dkð~xÞ� ¼
gð~xÞdkð~xÞe½−gkð~xÞ�

dkð~xÞ!
: (13)

The distribution over the entire set of pixel locations dk is
given by

p½ðdkÞ� ¼
YK
k¼1

Y
xϵχ

gð~xÞdkð~xÞe½−gkð~xÞ�
dkð~xÞ!

: (14)

As before, taking the natural log yields a modified log-
likelihood function

LPoisson½fð~x; ~αÞ� ¼ −
XK
k¼1

X
xϵχ

fdkð~xÞ ln½gkð~xÞ� − gkð~xÞg

−
XK
k¼1

X
xϵχ

dkð~xÞ; (15)

where the last term is a constant and can be neglected. Taking
the derivative with respect to the pixel intensities, the gra-
dient of the Poisson log-likelihood function can be repre-
sented as

∂
∂f

LPoisson½fð~x; ~αÞ� ¼
XK
k¼1

X
xϵχ

�
dkð~xÞ
gkð~xÞ

− 1

�
∂
∂f

gkð~xÞ: (16)

With respect to the Zernike coefficients, the gradient of
the Poisson log-likelihood function can be represented as

∂
∂~α

LPoisson½fð~x; ~αÞ� ¼
XK
k¼1

X
χ

�
dkð~xÞ
gkð~xÞ

− 1

�
∂
∂~α

gkð~xÞ: (17)

3 Methods
Our simulations assume that the propagation occurs over
horizontally homogeneous conditions with both the object
and the imaging system immersed in a turbulent atmosphere.
Furthermore, we assume that the height above ground does

not vary significantly and C2
n is a constant over the propa-

gation path.15 We assume that the simulated data has effec-
tively frozen the turbulence at the moment the turbulent
image is created. Prior to applying the simulated turbulent
images to the reconstruction algorithm, they must be recen-
tered as tilt is not estimated in the MFBD algorithm. This
was accomplished by using a correlation filter to compare
each image in the stack to the ensemble average image
and then shifting the turbulent image to recenter it. In
order to reduce the aliasing associated with the finite support,
each frame of the data set was preprocessed to pad the cen-
tered image by replicating the edges of the image outward
and then adding a border of 0. The abrupt transitions artifi-
cially introduced by the padding process can result in high
spatial frequency components that are sometimes mitigated
by the application of spatial filters. Using 15 frames in the
reconstruction, the image stack was padded and then a
Tukey16 tapered filtered was applied to the image. Both the
tapered and untapered images were applied to the estimator.
The elapsed processing time and MSE of the reconstructed
object were determined with the estimator limited to 20 iter-
ations. The amount of padding for subsequent processing
was determined by examining the effect on the processing
time and the MSE as the amount of padding was varied. All
subsequent processing was accomplished by padding each
recentered turbulent image but without tapering it. The
images are applied to the estimator with eight replicated pix-
els followed by five 0 pixels at the margins of each image,
bringing the total size of the image to 256 × 256 pixels as
seen in Fig. 2. These results are summarized in Table 2.

3.1 L-BFGS Optimization

The cost functions in Eqs. (10) and (15) are parameterized
by the object pixel intensities and aberration coefficients,
and are applied to a nonlinear optimization MATLAB rou-
tine to find the object and aberration coefficients most
likely to have produced the images that were simulated
in the data set. The intensities at each pixel location in
each image are vectorized. The vectorized initial guesses
for each image’s Zernike polynomial coefficients are
appended to the end of the vector of image intensities for-
matted as shown in Table 3. We are jointly processing all
images and all Zernike coefficients, thus for a data set of K,
N × N images, using J Zernike polynomial terms, there will
be N2 þ J × K parameters that must be jointly estimated.
The optimization routine will return a vector of the recon-
structed object’s intensities followed by the estimate of the

Fig. 2 Padding example: unpadded image (a), and padded image (b).
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Zernike coefficients for each frame of the input stack as
shown in Table 4. Optimization over such a large parameter
space is impractical using conventional optimization tech-
niques. To make the optimization tractable, we use the
L-BFGS method to process the images. L-BFGS is a
quasi-Newtonian “hill-climbing” technique that begins
with an initial guess at a solution for ~x0 and then proceeds
along a line in the direction pointed to by the gradient of the
objective function evaluated at each pixel location. One of
the drawbacks to searching along the gradient is the need
for the Hessian ∇2fð~xÞ to prevent the estimate from hop-
ping back and forth across the sides of the valley. The lim-
ited memory form of the BFGS does not require an explicit
expression for ∇2. It estimates the value of the Hessian
matrix by maintaining the last few updates of fð~xÞ and
∇fð~xÞ. A Quasi-Newtonian line search optimization can
quickly converge to a local minimum for cost functions,
but there is no guarantee that the minimum is a global mini-
mum. In processing the initial object estimate, the average
of all the frames used in the trial was applied to the
estimator.

It is necessary to provide the estimator with a stopping
criterion. Using the low condition data set with the number
of frames set to 5, 15, and 35, the log-likelihood function
value was monitored during reconstruction. The results

are shown in Fig. 3. Regardless of the number of frames
used in the reconstruction, assuming one call to the likeli-
hood function per iteration, the reconstruction is essentially
complete after 10 iterations. For the image reconstruction
processing in this article, the number of iterations was lim-
ited to 25.

3.2 Reconstruction Processing

Reconstruction processing begins by selecting images from
the complete data set in groups of K ¼ 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22, 23, and 25 frames and then incrementing that
group size through the entire data set. At each increment an
initial guess at the object fð~x0Þ and phase parameters αi is
provided to the optimization routine. This initial guess is
always the average of the K frames being used in the esti-
mate. The Zernike coefficients provided as an initial guess
are random Gaussian numbers with a mean of 0.5 and
unity variance.

The recovered image was compared to the diffraction lim-
ited image and the MSE determined. The MSE is averaged
over all pixels and determined as follows:

MSE ¼ 1

K

X ½fð~xÞ − f̂ð~xÞ�2
N2

; (18)

where fð~xÞ is the normalized diffraction limited image, f̂ð~xÞ
is the current normalized estimate of the object, and N2 is the
total number of pixels in the image. Then, the image stack
was incremented to begin processing the next group of K

Table 2 Selection of image padding.

Padding, filter versus MSE and elapsed time

Pixels
repeat
+ 0

w/o filter w/filter Total
image size
N × NMSE Time (s) MSE Time (s)

8þ 5 585 181 712 166 256

9þ 5 n/a n/a 586 306 258

10þ 5 586 221 625 202 260

15þ 5 586 252 593 230 270

20þ 5 583 268 595 276 280

25þ 5 588 392 591 361 290

Table 3 Input object and Zernike coefficients. The current stack of images being processed is spatially averaged and stripped into a vector with the
intensities at the beginning and the initial guess at each image’s Zernike coeffiecients at the end.

Estimator input parameters

ō1 ō1 . . . ōN2 ᾱ1;1 α̂1;2 . . . α̂1;J . . . α̂K;1 α̂K ;2 . . . α̂K ;J

Table 4 Vectorized reconstructed object and Zernike coefficients. The estimate is returned as a vector with the estimated object pixel intensities at
the beginning and the estimate of each input image’s Zernike coeffiecients at the end.

Output object estimate and Zernike coefficient vector

ô1 ô1 . . . ôN2 α̂1;1 α̂1;2 . . . α̂1;J . . . α̂K ;1 α̂K ;2 . . . α̂K;J

0 5 10 15 20
0

1000

2000

3000

4000

5000

6000

7000

Number of function calls

M
SE

Gaussian MSE convergance per log−likelihood function call

 

 

5 images
15 images
35 images

Fig. 3 Gaussian MSE versus number of function calls.
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turbulent images and the process was repeated. When the
entire data set has been processed, the average of the vector
of MSE’s for images processed K at a time was calculated.

3.3 Number of Zernike Terms Needed in the
Optimization Process

Recovering a common object estimate from the stack of
degraded images is computationally intense regardless of
the method used. Using more Zernike polynomial terms
require more variables to be estimated, and longer processing
will result. Figure 4(a) shows the processing time required
for a fixed number of frames when the number of Zernike
polynomial terms is varied. Figure 4(b) shows how the
processing time varies for a fixed number of Zernike coef-
ficients as the number of input images is varied. Of greater
impact on processing time is the number of images used to
recover the object. For a set of J, N × N images, the number
of variables increases as J × N2. Previous work indicated
that 15 images and 35 Zernike terms would provide a
good estimate of the object.17 Further exploration over a
larger data set yielded similar results and additional insight
into the estimator’s performance. With the number of images
set to 50 in order to reduce the influence of the number of
images on the outcome, the number of Zernike coefficients
was varied from 10 to 100 terms for all three turbulence

conditions as shown in Fig. 5. For all three turbulence
cases of C2

n, additional terms beyond 60 do not significantly
improve the MSE.

4 Results

4.1 Gaussian Noise Model

4.1.1 Case 1 low condition C2
N ¼ 2.25 × 10−14 mð−2∕3Þ

Examining Fig. 6, we see that at N ¼ 2 and thereafter the
estimator can be expected to perform better than the average
MSE for the simulated image which was 673. Marginal
improvement in MSE declines at N ¼ 12, reaching a maxi-
mum improvement of approximately 40% over the average
MSE over the entire data set. However, if processing time is
not of consequence, the MSE and its standard deviation con-
tinues to improve as additional images are added. Examining
the results of the Zernike term evaluation shown in Fig. 5, 60
Zernike coefficients were used to characterize the PSFs and
the results are compared to the estimator’s performance
using 30 Zernike terms in Fig. 6. The use of additional
Zernike terms does not add as much processing time as
using additional frames, but each reconstruction will take
longer as additional Zernike terms are used to characterize
the PSFs. The incremental improvement in MSE is not
worth the additional time consumed. The diffraction limited

Fig. 4 Processing time versus number of Zernike terms (a), and number of frames used in reconstruction (b).

Fig. 5 Mean square error (MSE) versus number of Zernike coefficients. With the number of frames held constant at 50, the number of Zernike
coefficients are varied from 10 to 100 for (a) low condition C2

N ¼ 2.25 × 10−14 mð−2∕3Þ, (b) moderate condition C2
N ¼ 3.75 × 10−14 mð−2∕3Þ, and

(c) severe condition C2
N ¼ 5.25 × 10−14 mð−2∕3Þ.
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image is compared to a sample of the simulated turbulent
image data set images and a sample reconstructed object
in Fig. 7.

4.1.2 Case 2 moderate condition
C2

N ¼ 3.75 × 10−14 mð−2∕3Þ

Figure 8 shows (a) the diffraction limited image, (b) a sample
recorded image, and (c) a sample reconstructed object. We
see in Fig. 9 that the MFBD estimator will consistently per-
form on average better than the average image’s error as soon

as the size of the processing window reaches two frames. At
N ¼ 2 and thereafter the estimator can be expected to per-
form better than the average MSE of the simulated image.
The improvement in MSE available by including additional
input frames hits a maximum of approximately 25% of full
scale at N ¼ 14. Neither the MSE nor the standard deviation
improves significantly as additional input images are added
to the stack. As a consequence of the results of the Zernike
term sweeps discussed above, the estimator was run using 60
Zernike coefficients to characterize the PSFs. The results are
compared in Fig. 9. The use of additional Zernike terms does

Fig. 7 Case 1 sample images. Compares the (a) diffraction-limited image with (b) the single sample image and (c) a sample reconstructed object.

Fig. 6 MSE versus number of frames. Case 1 low turbulence C2
N ¼

2.25 × 10−14 with 30 and 60 Zernike terms.

Fig. 8 Case 2 sample images. Compares the (a) diffraction-limited image with (b) the single sample image and (c) a sample reconstructed object.

Fig. 9 MSE versus number of frames. Case 2 moderate turbulence
C2

N ¼ 3.75 × 10−14 with 30 and 60 Zernike terms.
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not incur as large a computational penalty as that associated
with adding additional frames but each reconstruction will
take longer. The incremental improvement in MSE is not
worth the additional processing time.

4.1.3 Case 3 severe condition
C2

N ¼ 5.25 × 10−14 mð−2∕3Þ

Again we see in Fig. 10 that the estimator requires at least
two input frames to reliably produce an estimate of the object
that has a lower MSE than 1165, the average simulated
image’s MSE. At N ¼ 2 and thereafter the estimator can
be expected to perform better than the average MSE of
the recorded image. The improvement in MSE available
by including additional input frames hits a maximum of
approximately 36% of full scale at N ¼ 14 and neither
the MSE nor the standard deviation improves significantly
as additional input images are added to the processing
stack. Figure 11 shows (a) the diffraction limited image,
(b) a sample recorded image, and (c) a sample reconstructed
object. Based on the results of the Zernike term sweeps dis-
cussed above, the estimator was run using 60 Zernike coef-
ficients to characterize the PSFs. The results are compared in
Fig. 10. The use of additional Zernike terms does
not incur as large a computational penalty as that associated
with adding additional frames but each reconstruction will

take longer. As shown, the incremental improvement in MSE
is not worth the additional processing time.

4.2 Poisson Noise Model Mean Photon Rate 2 × 106

Each set of 1000 turbulent images representing the three tur-
bulence cases was used to generate a set of speckle images
with a mean photon count per image of 2 × 106. Each set of
images was processed using the MFBD methods described
above using the cost function and gradient described in
Eqs. (15)–(17).

4.2.1 Case 1 low condition C2
N ¼ 2.25 × 10−14 mð−2∕3Þ

Examining Fig. 12, we see that on average, MFBD perfor-
mance is less than the input images until 50 input frames are
used in each reconstruction. At N ¼ 50 and thereafter the
estimator can be expected to produce an estimate that has
a value lower than 2095, the average MSE of the images
in the simulated data set. Marginal improvement in MSE
continues as additional frames are added to the image stack
reaching a maximum of about 38% improvement over the
average MSE across the data set. However, if processing
time is not of consequence, the MSE and its standard
deviation continues to improve as additional images are
added to the stack of images presented to the estimator, so

Fig. 10 MSE versus number of frames. Case 3 severe turbulence
C2

N ¼ 5.25 × 10−14 with 30 and 60 Zernike terms.

Fig. 11 Case 3 sample images. Compares the (a) diffraction-limited image with (b) the single sample image and (c) a sample reconstructed object.

Fig. 12 MSE versus number of frames. Poisson Case 1 Low turbu-
lence C2

N ¼ 2.25 × 10−14, mean photon rate 2 × 106.
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additional improvement in the quality of the image is avail-
able. The diffraction limited image is compared to a sample
simulated turbulent image and a sample reconstructed object
as shown in Fig. 13.

4.2.2 Case 2 moderate condition
C2

N ¼ 3.75 × 10−14 mð−2∕3Þ

Figure 14 shows (a) the diffraction limited image, (b) a sam-
ple recorded image, and (c) a sample reconstructed object

using 175 frames to estimate the object. Again we see in
Fig. 15 that the MFBD estimator will not perform on average
any better than 2285, the average simulated turbulent image
error, until the number of images processed reaches 50
frames. At N ¼ 50 and thereafter the estimator can be
expected to perform better than the average MSE of the
simulated image reaching a maximum of about 34%
improvement. The marginal improvement in MSE available
by including additional input frames begins to decline at

Fig. 13 Case 1 sample images, mean photon rate 2 × 106, C2
N ¼ 2.25 × 10−14 mð−2∕3Þ. Compares the (a) diffraction-limited image with (b) a single

sample image and (c) a sample reconstructed object.

Fig. 14 Case 2 sample images, mean photon rate 2 × 106, C2
N ¼ 3.75 × 10−14 mð−2∕3Þ. Compares the (a) diffraction-limited image with (b) a single

sample image and (c) a sample reconstructed object.

Fig. 15 MSE versus number of frames. Poisson case 2 moderate tur-
bulence C2

N ¼ 3.75 × 10−14 mð−2∕3Þ, mean photon rate 2 × 106.
Fig. 16 MSE versus number of frames. Poisson case 3 severe tur-
bulence C2

N ¼ 5.25 × 10−14, mean photon rate 2 × 106.
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about N ¼ 175 and neither the MSE nor the standard
deviation improves significantly as additional input images
are processed.

4.2.3 Case 3 severe condition
C2

N ¼ 5.25 × 10−14 mð−2∕3Þ

Again we see in Fig. 16 that the MFBD estimator will not
perform on average any better than the average image error
until the number of images offered to the estimator reaches
50 frames. At N ¼ 50 and thereafter the estimator can be
expected to perform better than the average MSE (2456) of
the simulated image reaching a maximum of about 33%.
The marginal improvement in MSE available by including
additional input frames begins to decline at about N ¼ 175
and neither the MSE nor the standard deviation seems to
improve significantly from there as additional input
images are added to the stack. Figure 17 shows (a) the
diffraction limited image, (b) a sample recorded image,
and (c) a sample reconstructed object.

5 Conclusions
The performance of an unconstrained optimization-based
MFBD estimator was evaluated in terms of the MSE between
the reconstructed object and a diffraction limited image.
Three 1000-image data sets of a single image distorted by
low, moderate, and severe turbulence were generated
using a horizontal imaging simulator that includes anisoplan-
atic effects. The data sets were then applied to the estimator
and its MSE performance evaluated. If a hardware imple-
mentation was to be produced with a fixed, or limited set
of operator options, a wide variety of turbulence cases
would be well served by a selection of 14 images and 30
polynomial terms for use with the estimator. Point perfor-
mance estimates, using a data set of 1000 simulated turbu-
lence corrupted images, indicate that the algorithm is capable
of producing 40%, 25%, and 36% improvements in MSE for
low, moderate, and severe-anisoplanitic turbulence cases,
respectively, under the assumption that the phase errors
can be characterized as a Gaussian distribution. For all simu-
lated turbulence cases, significant reductions were observed
with as few as two input images. For the Poisson case, sig-
nificant results were achieved with as few as 50 frames, but
175 frames would be a reasonable place to design a system
that would be able to cope with a variety of atmospheric tur-
bulence and light levels. For further research, it may be pos-
sible to speed up the reconstruction by providing a better
initial guess at the object. Simulated annealing techniques

could be used to perturb the estimate away from a local mini-
mum and may prove to be an effective answer to local mini-
mum trapping.
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