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Abstract. We consider a computational superresolution inverse diffraction problem for phase retrieval from
phase-coded intensity observations. The optical setup includes a thin lens and a spatial light modulator for
phase coding. The designed algorithm is targeted on an optimal solution for Poissonian noisy observations.
One of the essential instruments of this design is a complex-domain sparsity applied for complex-valued object
(phase and amplitude) to be reconstructed. Simulation experiments demonstrate that good quality imaging can
be achieved for high-level of the superresolution with a factor of 32, which means that the pixel of the recon-
structed object is 32 times smaller than the sensor’s pixel. This superresolution corresponds to the object pixel as
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1 Introduction
In modern science and technology, phase and wavefield im-
aging are popular and well-established techniques for high-
accuracy measuring, recording, and reconstructing of two-
(2-D) and three-dimensional (3-D) objects. The areas of
applications are varying from astronomy and engineering
to medicine and biology.1,2 In engineering, phase and wave-
field sensing methods serve for nondestructive testing/con-
trol and precise measurements (e.g., see Refs. 3 and 4). In
medicine and biology, phase measurements are exploited
in microscopy and coherent tomography.

Phase imaging is a unique instrument to study details of
internal structure of transparent or semitransparent speci-
mens. While only intensity of light fields can be measured,
visualization of phase from intensity observations is an
important issue. In phase contrast microscopy, methods of
wavefront modulation in the Fourier plane have been devel-
oped to resolve the visualization problem (Frits Zernike
1930s, Nobel prize 1953). Despite the revolutionary success
of these methods, only qualitative visualization of phase can
be achieved in this way, where features of specimens even
visible maybe so distorted that accurate measurements and
even proper interpretations can be problematic.

Quantitative visualization is targeted on direct phase im-
aging and precise phase measuring. Roughly speaking, there
are two ways to achieve this goal. The first one is holography
with measurements given as intensities of the sums of refer-
ence and object beams. The second one is phase retrieval,
treated as an inverse diffusion imaging, essential alternative
to holography, which does not require a reference beam. In
modern science and technology, the quantitative phase im-
aging techniques are fundamentally based on digital data
processing.

Let us start from the following general formalization of
the phase retrieval problem:

EQ-TARGET;temp:intralink-;e001;326;457ys ¼ jPsfuogj2; s ¼ 1; : : : ; L; (1)

where uo ∈ CN×N is an N × N complex-valued 2-D image of
an object (specimen); Ps: CN×N ↦ CM×M is a complex-val-
ued operator of wavefront propagation from object to sensor
plane, ys ∈ RM×Mþ are M ×M intensity images of the wave-
fronts at the sensor plane.

L experiments are assumed in Eq. (1), where s indicates
the result for each of them. Equation (1) defines relations
between the complex-valued wavefronts at the object
plane and the power of the wavefronts at the sensor plane.
It is convenient to also introduce a notation for the complex-
valued wavefront at the sensor plane

EQ-TARGET;temp:intralink-;e002;326;303us ¼ Psfuog; s ¼ 1; : : : ; L: (2)

The observations for the noiseless case corresponding to
Eq. (1) are of the form

EQ-TARGET;temp:intralink-;e003;326;250ys ¼ jusj2; s ¼ 1; : : : ; L; (3)

and for noisy observations

EQ-TARGET;temp:intralink-;e004;326;207zs ¼ Gfjusj2g; s ¼ 1; : : : ; L; (4)

where G stands for a generator of random observations.
In this paper, we assume that the observations have a

Poissonian distribution typical for optics with observations
based on photon counting.

Reconstruction of the complex-valued object uo (phase
and amplitude) from noiseless or noisy observations is phase
retrieval problem. Here, phase emphasizes that the object
phase is a variable of the first priority while the object ampli-
tude is treated as an auxiliary variable often useful only in
order to improve phase imaging.
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Note that the term phase retrieval is originated from the
following mathematical problem. Let us be the Fourier trans-
form (FT) of uo, us ¼ F ðuoÞ. If us is given, uo can be pre-
cisely calculated as the inverse FT, uo ¼ F−1ðusÞ. Now let
the absolute value jusj of us be given and the phase of us is
unknown. Is it possible to reconstruct the phase of us and in
this way the original uo from the amplitude of FT jusj? In
general, the answer is negative and positive only for the spe-
cial classes of uo, in particular, for the so-called minimum
phase signals, or provided some restrictions. In this phase
retrieval formulation, the term phase points on the phase
of the FT, us.

In optics, the priority is different. The phase to be
retrieved is phase of the object uo. The image formation
operators Ps in Eq. (1) depend on optical setups. Various
methods are developed in order to make these Ps sufficiently
different for different s and gain observation diversity, ena-
bling finding uo from observations fysgL1 . Defocusing of the
registered images is one of the popular instruments to get a
sufficient phase diversity.5–8 In a recent development, a spa-
tial light modulator (SLM) is exploited for defocusing (e.g.,
see Refs. 9 and 10). The 4f-optical configuration with SLM
in the Fourier plane for defocus imitation is proposed in
Ref. 11 and further studied in Ref. 12.

Random phase modulation of the wavefront is another
tool to achieve a desirable phase diversity. It results in
observations known as coded diffraction patterns (e.g., see
Refs. 13–15)

EQ-TARGET;temp:intralink-;e005;63;444ys ¼ jPfMs · uogj2; s ¼ 1; : : : ; L; (5)

where P, CN×N ↦ CM×M , denotes the propagation operator
from the object to sensor planes fixed for all L experiments,
and the items of the phase masks Ms ∈ CN×N are complex
exponents Msðk; lÞ ¼ exp½jϕk;lðsÞ�.

The phases ϕk;lðsÞ in Ms can be generated as determin-
istic or random. The phase modulation is able to dramatically
change the diffraction pattern of Pfuog by redistribution of
the observed intensities from low to high frequencies.

1.1 Phase Retrieval Algorithms

There is a growing flow of publications on phase retrieval.
Various versions of the Gerchberg–Saxton (GS) techniques
are quite universal and applicable for different setups (e.g.,
see Refs. 7, 8, 16–18). These algorithms based on alternating
projections between the object and observations planes allow
to incorporate any information available for the variables in
these planes. Recent developments in this area as well as a
review can be seen in Ref. 19.

Contrary to this type of the intuitive heuristic algorithm,
the variational formulations have a strong mathematical
background and lead to algorithms solving optimization
problems. In particular, in Ref. 20 one can find constrains
sufficient for uniqueness of the solution and algorithms
that are very different from GS, such as the semidefinite pro-
gramming phase lifting using matrix completion (PhaseLift
algorithm)21 and the greedy sparse phase retrieval (GESPAR
algorithm).22

There are many publications on revisions of the GS tech-
niques using optimization formulations. In particular, the
links between the conventional GS and variational formula-
tions are studied in Refs. 23 and 24.

Concerning variational formulations for algorithm design,
we wish to note the recent Wirtinger flow and truncated
Wirtinger flow (TWF) algorithms.14,25 Methodologically,
these algorithms are developed for the Poissonian likelihood
criterion, i.e., for Poissonian noisy observations. Simulation
experiments confirm that these algorithm works precisely
provided nearly noiseless observations. However, they are
not so efficient for noisy observations.26

Phase retrieval from coded diffraction patterns of the type
(5) is of special interest in the recent publications (e.g., see
Refs. 14 and 27). The uniqueness of solution for this scenario
is proved in the later paper.

A new variational algorithm for phase retrieval from noisy
data based on transform domain sparsity for the object phase
and amplitude is developed in Ref. 26. Simulation experi-
ments demonstrate that this algorithm enables the accuracy
identical to the accuracy of the TWF algorithm for noiseless
data and the principal advantage for noisy data. The sparsity
concept as a tool for phase retrieval is a topic of the
paper,28 where an original sparsifying learning transform
is developed.

The spatial resolution in phase retrieval is limited by two
principal factors: low-pass filtering by the propagation
operator P and by pixel size in the pixelated discrete sensor
and modulation phase masks. Due to these factors, high-
frequency spatial information is lost in intensity observa-
tions, which can be treated as observations of the subsampled
true object uo. Various methods for superresolution imaging
allowing compensation of these subsampling effects are
of special interest. One of the straightforward approaches
to overcome the pixel size limitations is to use a sequence
of laterally shifted holograms (e.g., see Refs. 29–31).
Compressed sensing (CS) or sparse imaging is a computa-
tional approach for the restoration of subsampled data based
on a special mathematical modeling of uo. Applications
of this sort of the technique in optics can be seen in
Refs. 32–36.

Other factors limiting the spatial resolution concern
observation errors. First, we need to mention that a
Poissonian noise appears due to the measurement process
in optics counting the photons hitting the sensor. Second,
the use of a digital camera introduces the readout noise usu-
ally modeled by a Gaussian distribution and quantization
errors. The later ones can be modeled as a uniform distribu-
tion random variables. The quantization effects for phase
retrieval are studied,37 and it is shown that a low-bit quan-
tization may seriously diminish the accuracy of the phase
retrieval.

1.2 Contribution and Structure of This Paper

In this paper, we consider phase retrieval from Poissonian
noisy phase coded diffraction patterns with the optical
setup shown in Fig. 1. The complex-valued object uo to
be reconstructed is placed against the SLM applied for
phase modulation of the wavefront. A distance between
the object and the digital sensor is equal to 2f, where f
is a focal length of this lens, located in the middle between
the object and lens. The system is illuminated by a uniform
monochromatic coherent laser beam of wavelength λ and
intensity equal to 1. The forward propagation operator P
in Eq. (5) is calculated as a rescaled FT, provided that the
axial Fresnel approximation for the propagation is assumed.
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In this setup, the object, the SLM, and lens are considered as
phase transformers of the wavefronts. The superresolution
sparse phase and amplitude reconstruction (SR-SPAR) algo-
rithm proposed in this paper is designed for superresolution
phase/amplitude imaging, which is optimal for Poissonian
observations. It is shown by computational experiments
that high-accuracy superresolution reconstructions can be
achieved with spatial resolution going up to a quarter of
wavelength. The superresolution GS (SR-GS) algorithm is
introduced as a simplified and faster version of SR-SPAR
efficient for noiseless data. For the later case, both SR-GS
and SR-SPAR demonstrate identical accuracy. SR-SPAR
design is based on the methodology developed in Ref. 26
for pixel-resolution phase retrieval (SPAR algorithm).

This paper is organized as follows. In Secs. 1.3 and 1.4,
image formation and noisy observation modeling are pre-
sented. The sparsity in the complex domain and the SR-
SPAR and SR-GS algorithms are given in Sec. 2. Section 3
concerns the experimental study of the proposed algorithms.

1.3 Image Formation

For wavefront propagation from the object to sensor planes,
we use the paraxial Fresnel modeling. It gives the following
link between the object wavefront uo and the wavefront at
the sensor plane us [Ref. 38, Eq. (5.19)]:
EQ-TARGET;temp:intralink-;e006;63;276

usðξ; ηÞ ¼ μ

Z
∞

−∞

Z
∞

−∞
uoðx; yÞMsðx; yÞ

× exp

�
j
−2π
λf

ðxξþ vηÞ
�
dx dy; (6)

where μ ¼ 1∕ðj · fλÞ.
Here uoðx; yÞ and usðξ; ηÞ are complex-valued distribu-

tions of the wavefronts at the object plane [lateral coordinates
ðx; yÞ] and the sensor plane [lateral coordinates ðξ; ηÞ].
Mðx; yÞ is a complex-valued transmission function of SLM.
Using FT, the input–output model (6) can be given in the
form

EQ-TARGET;temp:intralink-;e007;63;127usðξ; ηÞ ¼ μF uo·Ms
ðξ∕λf; η∕λfÞ; (7)

where F uo·M stands for FT of the product uoðx; yÞMsðx; yÞ.
Equations (6) to (7) define the forward propagation oper-

ator Ps in Eq. (2). Note that the model (6) as used in Eq. (5)

is discrete-continuous with continuous uo and a physical dis-
cretization imposed on usðξ; ηÞ by the pixelated sensor and
by the pixelated SLM on Ms.

It is useful to mention that the forward propagation
[Eq. (6)] is valid also for a single lens system, provided
that the lens is located in the object/SLM plane and the
distance between this plane and the sensor is equal to f.

1.4 Poissonian Observations

The measurement process in optics amounts to count the
photons hitting the sensor. This process is well modeled
by the independent Poisson random variables in the follow-
ing form:

EQ-TARGET;temp:intralink-;e008;326;408pðzs½l� ¼ kÞ ¼ expð−ys½l�χÞ
ðys½l�χÞk

k!
; (8)

where pðzs½l� ¼ kÞ is the probability that the random obser-
vation zs½l� takes integer value k ≥ 0 and ys½l� is the intensity
of the wavefront at the pixel l defined by Eq. (1).

The parameter χ > 0 in Eq. (8) is the scaling factor of the
Poisson distribution that can be interpreted as an exposure
time. Recall that the mean and the variance of Poisson
random variable zs are equal and are given by ysχ,
i.e., Efzsg ¼ varfzsg ¼ ysχ. Defining the observation sig-
nal-to-noise ratio (SNR) as the ratio between the square
of the mean and the variance of zs, we have SNR ¼
E2fzsg∕varfzsg ¼ ysχ. It follows that the relative noisiness
of observations becomes stronger as χ → 0 (SNR → 0) and
approaches zero when χ → ∞ (SNR → ∞). The later case
corresponds to the noiseless scenario, i.e., zs∕χ → ys with
the probability 1.

The scale parameter χ is of particular importance for
modeling as it allows to control the level of noise in the
observations.

2 Superresolution Sparse Phase Retrieval

2.1 Sparse Wavefront Representations

The recent (10 to 15 years) sparse approximation and CS
techniques state that a signal/image can be sampled at a
rate much smaller than what is commonly prescribed by
Shannon–Nyquist. The sampling of a signal can indeed be
performed as a function of its “intrinsic dimension” rather

Fig. 1 A sketch of single lens optical setup: object (o), SLM, lens, and sensor (s).
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than according to its cutoff frequency. The modern advanced
techniques are able to design parametric regression models
for small patches of images and combine them in high-qual-
ity reconstructions. What is considered in our paper is a
development of this sort of thinking to the complex domain,
in particular, for superresolution in phase retrieval.

Image sparsity follows from the commonly observed self-
similarity of small fragments (patches) of images, meaning
that similar features can be found in patches located in differ-
ent parts of the image. It follows that an image may admit
sparse representations: it can be well approximated by linear
combinations of a small number of basic functions. Sparsity
has been a hot topic in the last years for various imaging
problems (e.g., see Ref. 39).

For the complex domain images, such as the object
uo ¼ Bo expðiφoÞ, sparse modeling can be presented in a
number of ways essentially different from the methods stan-
dard for real-valued variables. This principal difference starts
from the fact that uo is defined by two variables: phase φo
and amplitude Bo.

The sparse representation can be imposed on complex-
valued uo directly using complex-valued basic functions
or on the following pairs of real-valued variables:

1. Phase φ (interferometric or absolute) and ampli-
tude Bo;

2. Real and imaginary parts of uo.

Remember that an interferometric (wrapped) phase is
restricted to the interval ½−π; πÞ, whereas an absolute
(unwrapped) phase is different by adding an integer number
of 2π to the interferometric phase. In what follows, we
denote the interferometric (wrapped) phase of the object
as φo and the corresponding absolute phase as φo;abs. We
introduce the phase-wrap operator W∶R ↦ ½−π; πÞ, linking
the absolute and principal phases as φo ¼ Wðφo;absÞ. We
also define the unwrapped phase as φo;abs ¼ W−1ðφoÞ.
Notice that W−1 is not an inverse operator for W because
the latter is highly nonlinear, and for signals of dimension
two and higher, there is no one-to-one relation between
φo;abs and φo.

In principle, the absolute phase always can be recon-
structed as the interferometric one with the application of
unwrapping as postprocessing. However, for objects with
phase varying beyond the interval ½−π; πÞ, the absolute
phase sparse modeling brings essential advantage. It is
because, wrapped phases are complicated by fringes, making
images more difficult for sparse approximation.

The success of the sparsity approach depends on how rich
and redundant are the used dictionaries/transforms (sets of
basic functions). In this paper, the sparsity analysis and syn-
thesis are based on the recent and proved to be very efficient,
block-matching 3D (BM3D) denoising algorithm.40

Let us mention the basic steps of this advanced technique
known as nonlocal self-similarity sparsity. At the first stage,
the image is partitioned into small overlapping square
patches. For each patch, a group of similar patches is col-
lected that are stacked together to form a 3-D array (group).
This stage is called grouping. The entire 3-D group-array is
projected onto a 3-D predefined transform basis. The spectral
coefficients obtained as a result of this transform are hard-
thresholded (small coefficients are zeroed) and the inverse

3-D transform gives the filtered patches, which are returned
to the original position of these patches in the image. This
stage is called collaborative filtering. This process is repeated
for all patches of the entire image and obtained overlapped
filtered patches are aggregated in the final image estimate.
This last stage is called aggregation. The details of this algo-
rithm can be seen in Ref. 40.

The links of the BM3D algorithm with the general spar-
sity concept are revealed in Ref. 41, where it is shown that
the grouping operations define the data adaptive analysis and
synthesis image transforms (frames) and these transforms
combined with the thresholding define the thresholding
stage of the BM3D algorithm. It is emphasized that sparsity
is achieved mainly due to the grouping, which allows the
joint analysis of similar patches and, in this way, to guaranty
the sparsity (self-similarity of patches), at least for each of
the 3-D groups.

Note that the standard BM3D algorithm, as it is presented
in Ref. 40, is composed of two successive stages: threshold-
ing and Wiener filtering. In this paper, we use a simplified
version of BM3D, as it is introduced in Ref. 41, including
grouping, transforms, and thresholding without Wiener
filtering.

In what follows, we exploit, for the complex-valued uo,
the sparsity imposed on phase and amplitude. The variational
formulation for reconstruction of a complex-valued uo, opti-
mal for noisy data, results in the likelihood type criteria and
optimization with the constrained imposed on sparsity. It has
been shown for various optical problems (e.g., see Refs. 42–
44) that the algorithms are iterative and the sparsity appeared
as BM3D filtering applied separately to estimates of phase
and amplitude.

This filtering can be represented in the form

EQ-TARGET;temp:intralink-;e009;326;389φ̂o ¼ BM3Dphaseðφo; thφÞ; (9)

EQ-TARGET;temp:intralink-;e010;326;357B̂o ¼ BM3DamplðBo; thBÞ; (10)

where the filters are applied to the phase and amplitude of uo.
Here φ̂o and B̂o are sparse approximations of φo and Bo;

phase and amplitude as indices of BM3D are used in order to
emphasize that the parameters of BM3D can be different for
phase and amplitude; and thφ and thB are threshold param-
eters of the algorithms. The phase in Eq. (9) can be interfero-
metric or absolute depending on the sparsity formulation.

The implementation of the sparsity hypothesis in the form
of the special filters Eqs. (9)–(10) is in line with the recent
concept plug-and-play,45–47 stating that any efficient filter
can serve as a potentially good prior and efficient regulari-
zator in variational design of data processing algorithms.

2.2 Superresolution SPAR Algorithm

2.2.1 Discretization

The computational wavefront restoration is going from the
continuous domain wavefront propagation [Eq. (7)] to the
corresponding discrete model based on pixelation of the
object uo, thus, we arrive to the discrete modeling of the sys-
tem linking discrete values of the sensor output (observa-
tions) with the discrete values of the object uo.

Conventionally, the pixels are square of the size ΔSLM ×
ΔSLM and Δs × Δs for the SLM and sensor, respectively. In
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what follows, for simplicity, ΔSLM ¼ Δs. A continuous
object is discretized by pixels of the size Δo × Δo. This dis-
cretization is necessary both for digital data processing as
well as for modeling of wavefront propagation and image
formation. Contrary to the pixels of SLM and sensor defined
by the corresponding optical-electronic devices, the object
pixels are computational, which maybe be taken arbi-
trary small.

Assuming for a moment that Δo ¼ Δs ¼ ΔSLM, the
reconstruction of uo from the observations fzsg is the
standard phase retrieval problem with an object resolution
dictated by the pixel size of the sensor and the SLM.

Let us term this case pixel-resolution imaging.
If Δo < Δs, we arrive to a much more challenging prob-

lem of pixel superresolution or subpixel resolution imaging.
Further, if Δo is so small that Δo ≃ λ, then it is wavelength
resolution. Going further to Δo < λ we arrive to subwave-
length or wavelength superresolution. The superresolution
phase retrieval with smaller and very small Δo as compared
with Δs and λ is the goal of this paper.

It is convenient to assume thatΔs ¼ rs · Δo, where rs ≥ 1
is an integer pixel superresolution factor. In this case, the
SLM pixel ΔSLM × ΔSLM covers r2s computational object
pixels and provides the same modulation phase-shift to all
object pixels in this group.

Using for calculation the fast Fourier transform (FFT), we
arrive to the discrete analog of Eq. (7), within an invariant
factor μ, in the form

EQ-TARGET;temp:intralink-;e011;63;444us½k; l� ¼ FFTfuo½s; t� · Ms½s; t�g
Δ2

o

λf
; (11)

EQ-TARGET;temp:intralink-;e012;63;399ΔsΔo ¼
λf
ND

; (12)

where FFT stands for 2-D FFT, and ND is a side length of a
square-support for ½k; l� and ½s; t�.

Here, the variables us½k; l� and uo½s; t� · Ms½s; t� are
sampled with the computational period Δo. Then, in particu-
lar, the modulation functionMs½s; t� is a piecewise invariant
with rs × rs squares of invariant values covering the corre-
sponding pixels of SLM.

The constraint (12) is typical for use of FFT for the cal-
culation of discrete FT. All functions and FFT in Eq. (11) are
calculated for the square support ND × ND, where ND is
always higher (even much higher) than the pixelated sizes
of the object, the SLM, and the sensor.

According to Eq. (5), the discrete diffraction pattern is
calculated as ys½k; l� ¼ jus½k; l�j2 with the noisy observations
obtained according to the Poissonian distribution (8). Note
that these computational ys½k; l� are given with the computa-
tional period Δo while the observations are introduced with
the sampling period Δs. Equations (11)–(12) define the dis-
crete forward propagation model of the system shown in
Fig. 1. In order to simplify the presentation, we preserve
the notation P for this discrete model initially introduced
for the continuous domain variables.

2.2.2 SR-SPAR Algorithm

The presented SR-SPAR algorithm is derived from the varia-
tional formulation introduced for optimal reconstruction of

uo from Poissonian observations fzs½k; l�g. The correspond-
ing minus log-likelihood for Poissonian observations accord-
ing to Eq. (8) is as follows:

EQ-TARGET;temp:intralink-;e013;326;719L ¼
XL
s¼1

X
k;l

½jus½k; l�j2χ − zs½k; l� logðjus½k; l�j2χÞ�: (13)

This criterion should be minimized with respect to
uo½k; l�, provided Eq. (11) linking uo and us and restrictions
imposed by the sparsity requirements.

The derivation of the algorithm is similar to the technique
developed in Ref. 26 for the pixel-resolution phase retrieval.
The difference mainly concerns the sampling rates: Δo ¼ Δs
in Ref. 26 and in this paper Δo ¼ Δs∕rs meaning that the
observations should be upsampled by a factor rs.

We present the SR-SPAR algorithm in the form given in
Table 1. It is emphasized that SR-SPAR, being based on the
minimization of Eq. (13), is optimal, in the statistical sense,
for Poissonian observations.

The inputs z̃s in this algorithm are the observations zs
upsampled by a factor rs. We use the zero-order upsampling
giving z̃s as piecewise invariant function with the invariant
values for computational pixels corresponding to each of the
larger size pixels of the sensor. All calculations in the SR-
SPAR algorithm are produced for high-resolution variables
with the sampling Δo.

At step 1, the object wavefront estimate xt is multiplied by
the phase mask Ms and propagated by the operator P to the
sensor plane, with the result denoted as vts. These wavefronts
are calculated for the diffraction area ND × ND denoted
as SD.

Table 1 SR-SPAR phase retrieval algorithm.

Input∶fz̃sg; s ¼ 1; : : : ; L; x1

for t ¼ 1; ::; T ;

1. Forward propagation:

vt
s ¼ PfMs · x tg, vt

s ∈ SD , s ¼ 1; : : : ; L;

2. Poissonian noise suppression:

ut
s ¼

�
bt
s exp½j · angleðv t

sÞ�; v t
s ∈ SS;

v t
s; v t

s ∈ SD \ SS; s ¼ 1; : : : ; L;

3. Backward propagation:

xt ¼ 1
L

PL
s¼1 M

�
s · P−1fut

sg;

4. Phase unwrapping:

φt
abs ¼ W−1ðangleðx t ÞÞ;

5. Sparse phase and amplitude filtering:

φtþ1
abs ¼ BM3Dphaseðφt

abs; thφÞ,

Btþ1 ¼ BM3Damplðabsðx t Þ; thaÞ;

6. Object wavefront update:

xtþ1 ¼ Btþ1 expðjφtþ1
abs Þ;

Output∶φ̂o;abs ¼ φTþ1
abs , B̂o ¼ BTþ1.
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At step 2, the wavefront is updated to the variable uts
by filtering the amplitude of vts according to the given
observations ~zs. The following formula, as derived in
Ref. 26, defines the rule on how the updated amplitude bs
is calculated:

EQ-TARGET;temp:intralink-;e014;63;697bs ¼
jvsj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvsj2 þ 4z̃sγ1ð1þ γ1χÞ

p
2ð1þ γ1χÞ

: (14)

These calculations are pixelwise; γ1 > 0 is the parameter
of the algorithm. This update is produced provided known
observation z̃s, i.e., for the pixels belonging to the sensor
area SS, vs ∈ SS. In our modeling, the computational diffrac-
tion area SD is always equal or larger than the sensor area,
SS ⊆ SD. For the area out of the sensor, the wavefront values
are preserved, us ¼ vs for vs ∈ SD \ SS.

At step 3, the estimates futsg backpropagate to the
object plane and update the object wavefront estimate
xtþ1. Here, M�

s means a complex conjugate Ms and
P−1futsg ¼ FFT−1futs½k; l�gλf∕Δ2

o.
The sparsification (filtering on the base of sparse approx-

imations) is produced in step 5. The unwrapping of the phase
with reconstruction of the absolute phase in step 4 is neces-
sary only if the range of the object phase goes beyond 2π.

Following to Ref. 26, we introduce also a simplified
version of SR-SPAR named the SR-GS. It differs in two
points from SR-SPAR in Table 1: the phase unwrapping
and BM3D filtering (steps 4 and 5) are omitted and the
Poissonian filtering in step 2 is replaced by the rule
bs →

ffiffiffiffiffiffiffiffiffi
z̃s∕χ

p
, which corresponds to the amplitude update

standard for the GS style algorithms. This later rule follows
from the optimal solution (14) provided that the data are
noiseless, i.e., χ is very large.

It was demonstrated in Ref. 42 that using the update shown
in step 2 and different for vts ∈ SD \ SS and vts ∈ SS allows to
improve the accuracy of the wavefront reconstruction. In
Ref. 48, this effect is interpreted as a self-extrapolation of
holograms applied for resolution enhancement.

We make publicly available the MATLAB® democodes49

of the developed SR-GS and SR-SPAR algorithms, which
can be used to reproduce the experiments presented in
this paper as well as for further tests.

3 Numerical Experiments
Both algorithms, SR-SPAR and SR-GS, were tested for
various models of uo. In what follows, we are restricted
mainly to 256 × 256 phase-objects of invariant amplitude
and three types of varying phase: test-images Lena normal-
ized to the interval [0, π∕2]; Gaussian shape absolute
phase (phase range 50 radians), and discontinuous shear
plane (phase range 65 rad). Respectively, we treat experi-
ments with Lena as interferometric phase imaging, as they
do not require phase unwrapping, and experiments with
Gaussian and shear plane as absolute phase imaging requir-
ing the unwrapping operation in SR-SPAR. The PUMA
algorithm50 is used for phase unwrapping in step 4 of
SR-SPAR.

The fixed parameters of the experiments are:
Δs ¼ ΔSLM ¼ 5.2 μm, λ ¼ 632.8 nm, sensor size, in pixels,
4096 × 4096, computational diffraction area SD of size
5120 × 5120. The main varying parameters are the computa-
tional sampling period Δo, the Poissonian noise parameter χ,

and computational resolution factor calculated with respect
to the sensor as rs ¼ Δs∕Δo. It is assumed that rs is integer
and takes values rs ¼ 1, 8, 16, and 32. The rs ¼ 1 corre-
sponds to the pixel-resolution and larger rs mean superreso-
lution of the higher order. The sensor of a much larger size
than the object is taken in order to enable a good quality of
superresolution with large values of the superresolution fac-
tors rs.

It is natural to also measure the superresolution with
respect to the wavelength λ as the ratio rλ ¼ Δo∕λ ¼ Δs∕
ðrsλÞ. Then, rs ¼ 1 gives the pixel-resolution with
rλ ¼ 8.21, i.e., the sensor and SLM pixels are about eight
times larger than the wavelength λ. For rs ¼ 8, we obtain
the wavelength resolution with rλ ¼ 1.03, the higher values
rs ¼ 16, 32 correspond to the subwavelength resolution with
computational pixels Δo smaller than the wavelength with
the wavelength resolution factors rλ ¼ 0.515 and 0.257.

Note that according to the restriction (11), smaller Δo
(larger rs) assumes that the lens with a smaller focal distance
should be used in the considered optical setup. For the intro-
duced set rs, we obtain the following focal distances
f ¼ ½54.7; 6.8; 3.4; 1.7� mm, respectively.

In our experiments, the phase modulation masks
Msðk; lÞ ¼ exp½jϕk;lðsÞ� are random with the Gaussian in-
dependent zero-mean phase values, ϕk;lðsÞ ∼N ð0; π∕4Þ.

The accuracy of the wavefront reconstruction is charac-
terized by RMSE criteria calculated independently for ampli-
tude and phase. The object phase image can be estimated
at least within an invariant global phase-shift φshift. It is esti-
mated using as reference the phase of the true object. This
correction of the phase is done only for the calculation of the
criteria and for result imaging and is not used in the algo-
rithm iterations.

In what follows, we produce calculations for noisy and
nearly noiseless data with the Poissonian scale parameter
χ taking values in the internal [1, 1000]. The smallest χ
results in the noisiest observations. The corresponding SNR
is calculated in dB as

EQ-TARGET;temp:intralink-;e015;326;334SNR ¼ 10 log10

�
χ2

XL
s¼1

kysk2F∕
XL
s¼1

kysχ − zsk2F
�

dB:

(15)

For the superresolution experiments, we use the objects
with a fixed number of computational pixels of size
Δo ¼ Δs∕rs, thus larger rs means a smaller physical size
of the object. The successful superresolution imaging, in par-
ticular the wavelength resolution, requires a sensor size being
much larger than the object size.

3.1 Modulation Phase Mask and Sparsity

Let us start from qualitative observations concerning the
effects of the basic ingredients of the considered setup and
the developed algorithm. Figure 2 shows the reconstruction
of the object phase for noiseless data (χ ¼ 1000), provided
that only a single experiment is produced, L ¼ 1. The left
image shows the true phase. The next completely destroyed
image in Fig. 2 is obtained from the experiment with no
phase modulation and without the sparse modeling for
phase and amplitude. Thus, the diffraction pattern is a
squared amplitude of FT of the object complex exponent.

Optical Engineering 094103-6 September 2017 • Vol. 56(9)

Katkovnik and Egiazarian: Sparse superresolution phase retrieval from phase-coded. . .



The third image is obtained from a single experiment, where
the phase modulation is employed and no BM3D filters are
used (SR-GS algorithm). This modulation makes the main
features of the phase distribution at least visible but quite
noisy. This noise is a result of the used phase modulation.
The fourth image is obtained by the SR-SPAR algorithm,
i.e., with phase modulation and BM3D filtering for the
phase and amplitude. It shows nearly perfect reconstruction
of the object phase.

For a larger number of experiments (L > 1), the accuracy
of the phase reconstruction with the phase modulation
improves quickly both for processing with SR-SPAR and
with SR-GS. Figure 2 and above comments are given for
the pixel-resolution imaging, rs ¼ 1, and for nearly noiseless
observations.

3.2 Superresolution for Interferometric Phase

The reconstruction results for the Lena phase test-image with
the superresolution factor rs ¼ 8 are shown in Figs. 3 and 4.
The cross sections for phase and amplitude are shown for
middle horizontal lines, where the red (solid) and blue (dot-
ted) curves correspond to the reconstructions and true
images, respectively. The reconstructions in Fig. 3 are of
the high accuracy. They are obtained for the low level

noise (χ ¼ 1000, SNR ¼ 60 dB). The results in Fig. 4 are
much worse but we need to take into account that the obser-
vations are very noisy (χ ¼ 1, SNR ¼ 30.5 dB) for superre-
solution with the factor rs ¼ 8. Thus, we can treat these
results as of acceptable quality. It can be noted that the
low level noise reconstruction is, visually, nearly perfect.
The accuracy of reconstruction is good for both phase and
amplitude. The experiments produced for higher order res-
olution (not shown) demonstrate a noticeable degradation
of results for rs ¼ 16 and fail completely for rs ¼ 32.

3.3 Absolute Phase Imaging

SR-SPAR phase imaging for shear plane phase distribution
ð256 × 256Þ with the maximum value of about 65 rad is
shown in Figs. 5–7. In Fig. 5, the results are shown for
the resolution factor rs ¼ 8. Visually, the obtained 3-D sur-
face is very close to the true one, thus, it is not necessary to
show it. The 2-D images in these figures show the wrapped
phase and amplitude reconstructions. As it is seen from the
wrapped phase, the errors in the reconstruction can be
noticed. Nevertheless, the quality of this superresolution
reconstruction is very good. In Fig. 6, the similar results
are shown for the much higher resolution factor rs ¼ 16.
The shown 3-D surface is of a quite acceptable quality

Fig. 2 Phase reconstructions from left to right: (a) true Lena image, (b) reconstruction without phase
modulation and BM3D filtering, (c) reconstruction with phase modulation but without BM3D filtering
(SR-GS), (d) reconstruction with phase modulation and with BM3D filtering (SR-SPAR), L ¼ 1, χ ¼ 1000.

Fig. 3 SR-SPAR, Lena phase image and amplitude reconstructions:
superresolution with r s ¼ 8, for nearly noiseless observations,
χ ¼ 1000. In the cross sections (middle horizontal line), the solid
(red) curves are for the reconstructions and the dotted (blue) ones
for the true data.

Fig. 4 SR-SPAR, Lena phase image and amplitude reconstructions:
superresolution with r s ¼ 8, noisy observations, χ ¼ 1. In the cross
sections (middle horizontal line), the solid (red) curves are for the
reconstructions and the dotted (blue) ones for the true data.
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Fig. 5 SR-SPAR, shear plane phase image, phase and amplitude reconstructions: nearly noiseless
data, χ ¼ 1000. The superresolution reconstruction is produced for r s ¼ 8. The 3-D image is very
close to the true phase image. The 2-D images are given for the wrapped phase and amplitude
reconstructions.

Fig. 6 SR-SPAR, shear plane phase image, phase and amplitude reconstructions: nearly noiseless
data, χ ¼ 1000. The superresolution reconstruction is produced for r s ¼ 16. The 2-D images are
given for the wrapped phase and amplitude reconstructions. The 3-D image surface is covered by
well seen square blocks 16 × 16. This discretization of the surface is due to SLM pixels having size 16 ×
16 in the computational pixels.

Fig. 7 SR-SPAR, shear plane phase image, phase and amplitude reconstructions: nearly noiseless
data, χ ¼ 1000. The superresolution reconstruction is produced for r s ¼ 32. The 2-D images are
given for the wrapped phase and amplitude reconstructions. The algorithm failed.
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while the wrapped phase and amplitude reconstruction,
shown as 2-D images, definitely demonstrate that these
results are of a much lower quality than those achieved
for rs ¼ 8. Finally in Fig. 7, we show the attempt to get
reconstruction for the superresolution factor rs ¼ 32. These
results are definitely negative, and the phase reconstruction
failed.

Phase imaging for Gaussian phase distribution ð256 ×
256Þ with maximum value of about 50 rad is shown in
Figs. 8 and 9. The reconstructions are obtained for quite
noisy data χ ¼ 100 and the superresolution factors rs ¼ 8
and rs ¼ 16. For rs ¼ 8 (Fig. 8), the quality of the
reconstruction is very good and the 3-D phase reconstruction
is very close to the true Gaussian phase object. The situation
becomes much worse for the superresolution factor rs ¼ 16
(Fig. 9). The errors in the phase reconstruction are obvious
and quite large. The attempt to get reconstruction for the
superresolution factor rs ¼ 32 failed and we do not show
these images.

In conclusion of this section, we wish to note that we are
talking about very high levels of the pixel superresolution

rs ¼ 8 and rs ¼ 16 corresponding to the wavelength and
half wavelength superresolution.

3.4 More on Subwavelength Resolution

Let us demonstrate a few interesting tests on subwavelength
imaging with rs ¼ 32 corresponding to rλ ¼ 0.257 with the
object size 128 × 128.

In Figs. 10 and 11, the reconstructions for the two-peak
phase object are shown. The four squares clearly seen in the
amplitude reconstructions are patterns of four pixels of SLM
each covering 32 × 32 computational pixels of the object.
These images confirm that both developed algorithms SR-
GS and SR-SPAR are able to reconstruct two pointwise
phase peaks separated by the distance equal to 0.257λ. It
is a demonstration of the subwavelength resolution.

3.5 Parameters of the SR-SPAR Algorithm

The performance of the SR-SPAR algorithm essentially
depends on its parameters. Optimization can be produced for
each magnitude/phase distribution and noise level. However,

Fig. 8 SR-SPAR, Gaussian plane phase image, phase and amplitude reconstructions: noisy data,
χ ¼ 100. The superresolution reconstruction is produced for r s ¼ 8. The 2-D images are given for
the wrapped phase and amplitude reconstructions.

Fig. 9 SR-SPAR, Gaussian plane phase image, phase and amplitude reconstructions: noisy data,
χ ¼ 100. The superresolution reconstruction is produced for r s ¼ 16. The 2-D images are given for
the wrapped phase and amplitude reconstructions.
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in our experiments, the parameters are fixed. The image
patches in BM3D are of size 8 × 8. The group size is limited
to 39 patches. The step size among the neighboring patches
is equal to 3. The transforms DCT (for patches) and Haar (for
the group length) are used for 3-D group data processing in
BM3D. In the shown results as an initial guess for the iter-
ative SR-GS and SR-SPAR algorithm, we use an image with
the invariant amplitude equal to 1.3 and zero phase.

The parameters defining the iterations of the algorithm are
as follows: γ1 ¼ 1∕χ, tha ¼ 4.0, and thφ ¼ 4.0. The number
of the iterations is fixed to 50.

For our experiments, we use MATLAB R2015a and
a computer with the processor Intel(R) Core(TM) i7-
4800MQ@ 2.7 GHz.

The complexity of the algorithm is characterized by the
time required for processing. For 50 iterations, L ¼ 12 and
256 × 256 images this time is as follows: SR-GS ≃ 2500 s;
SR-SPAR without phase unwrapping ≃3300 s; SR-SPAR
with phase unwrapping ≃1500 s.

4 Conclusion
Computational superresolution phase retrieval is considered
for phase-coded intensity observations. The proposed

algorithm is derived as an optimal solution for Poissonian
noisy observations. One of the essential instruments of the
algorithm is a sparsity hypothesis applied to both phase
and amplitude. The efficiency of the algorithm is confirmed
by simulation experiments. It is shown that high level super-
resolution can be achieved with the pixel superresolution fac-
tor up to 32, i.e., the pixel size of the reconstructed object in
32 times smaller than the pixel size of the sensor and the
SLM. In comparison with the wavelength, the superresolu-
tion up to one-quarter of the wavelength is demonstrated.
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