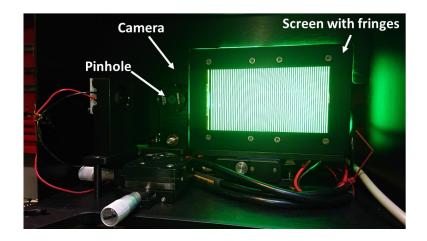


Development of full-field deflectometry for characterization of free-form mirrors for space applications

BOUWENS Arno⁽¹⁾, BOUSSEMAERE Luc⁽¹⁾, ANTOINE Philippe⁽¹⁾, MOREAU Vincent⁽²⁾, BORGUET Benoit⁽²⁾, ARTS Mathijs⁽³⁾, TOMUTA Dana⁽³⁾, GEORGES Marc⁽⁴⁾, VANDENRIJT Jean-François⁽⁴⁾

- (1) Lambda-X, Avenue Schuman 102, 141 Nivelles, Belgium
- (2) AMOS, Rue des Chasseurs Ardennais 2, 4031 Angleur, Belgium
 - (3) ESTEC, Postbus 299 2200 AG Noordwijk, The Netherlands
- (4) Centre Spatial de Liège, Avenue du Pré-Aily 4031 Angleur Belgium

2 fullfield deflectometers for 2 types of mirrors


Freeform mirrors

- In situ measurement
- Characterization of small mirrors or subaperture stighting
 - FOV: Ø=30mm
 - Angular acceptance: ±2°
- · Fullfield deflectometry
 - Phase-shifting Schlieren
 - Measurement of the slope maps along 2 perpendicular directions
- Instrument
 - Fringe projection system with fast SLM at the focal plane of the projection lens
 - Telecentric imaging system
- Output
 - Absolute reconstruction of the shape of the mirror
 - Characterization of residual waviness
- Easy to use
 - Very simple alignment
 - No calibration
- Cost effective

Large concave mirrors

- Characterization of large concave mirrors
 - FOV>30°
 - Working distance: validated from 300mm to1000mm
- Fullfield deflectometry
 - Measurement of the deformation of a fringe pattern
- Instrument
 - 5" fringe display with custom backlight
 - Imaging system
 - Illumination & imaging systems are calibrated
 - Phase-shifting method
- Absolute reconstruction of the shape of the mirror
 - Iterative algorithm
- Easy to use
 - Very simple alignment
 - No calibration
- Cost effective

