From Event: SPIE Optical Engineering + Applications, 2018
Imaging LIDARs capture location of objects in three-dimensional (3D) space, 2D field-of-view (FOV) or 2D
in angular space, and 1D in distance, thus are used for variety of applications such as autonomous
driving cars, robotics, and gesture recognitions. Imaging LIDAR, in its implementation of optics, has
several options. One of the most commonly used optical architectures is a mechanical scanning of
angular space while employing distance mapping on point by point basis. The architecture
is suitable for long distance range finding and wide field of view imaging, though scan speed is limited by mechanics. Also, completely non-mechanical scanning approach, a lens with 2-dimensional sensor array, is adopted however the measurement range is ingeneral limited.
Alternatively, we propose a new architecture, an optical phased array that can be used in both
transmit and receive modes. The photonic based phased array produces a single main beam that can be
electrically steered similar to modern day advanced radars. By using a photonic based array architecture
very small, tightly spaced elements can be formed. Since the array produces a grating lobe free radiation
pattern gain is maximized. This enables longer range, faster scans, and unambiguous angular data when
compared to other optical phased arrays.
© (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Matt Salem and Yuzuru Takashima, "Design of phased array beam steering device for situation awareness applications (Conference Presentation)," Proc. SPIE 10757, Optical Data Storage 2018: Industrial Optical Devices and Systems, 107570I (Presented at SPIE Optical Engineering + Applications: August 20, 2018; Published: 18 September 2018); https://doi.org/10.1117/12.2323906.5836682941001.