From Event: SPIE Optical Engineering + Applications, 2019
In this paper we examine several contrast-degrading static signature sources present in current terrestrial exoplanet Lyot Coronagraph/Telescope optical systems. These are: - Unnecessary optical surfaces, which increase cost, absorption, scatter, wavefront control and alignment issues. A suggested solution is to make every effort to investigate innovative solutions to reduce the number of optical surfaces during the early design phase. Consider free-form optics. - Diffraction from secondary support systems and classical hexagon segmented apertures, which masks the low IWA terrestrial exoplanets. A suggested mitigation is to investigate curved secondary support systems and a pinwheel architecture for the deployable primary aperture. - Polarization Fresnel and form birefringence aberrations, which distort the system PSF, introduce absorption, scatter and wavefront control issues. Mitigation is to reduce all ray-angles of incidence to a minimum, investigate zero-loss polarization compensation wavefront technology, and investigate metal thin film deposition processes required to minimize form birefringence in large-area high-reflectivity coatings. - Small-angle specular or resolved angle scattered light, which places a narrow halo of incoherent light around the base of the PSF. There is no requirement on mirror smooth-surface scatter. Investigate the physical source of the small angle scatter and develop mirror polishing and thin film deposition processes to minimize scatter.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J. B. Breckinridge, J. E. Harvey, R. Irvin, R. Chipman, M. Kupinski, J. Davis, D-W. Kim, E. Douglas, C. F. Lillie, and T. Hull, "ExoPlanet Optics: conceptual design processes for stealth telescopes," Proc. SPIE 11115, UV/Optical/IR Space Telescopes and Instruments: Innovative Technologies and Concepts IX, 111150H (Presented at SPIE Optical Engineering + Applications: August 11, 2019; Published: 9 September 2019); https://doi.org/10.1117/12.2528825.