Proceedings Volume 10088 is from: Logo
SPIE LASE
28 January - 2 February 2017
San Francisco, California, United States
Front Matter: Volume 10088
Proc. SPIE 10088, Front Matter: Volume 10088, 1008801 (5 May 2017); doi: 10.1117/12.2276090
Visible-UV Generation
Proc. SPIE 10088, 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system, 1008802 (20 February 2017); doi: 10.1117/12.2251964
Proc. SPIE 10088, 3.5 W of diffraction-limited green light at 515 nm from SHG of a single-frequency tapered diode laser, 1008803 (20 February 2017); doi: 10.1117/12.2249671
Proc. SPIE 10088, 149.8 nm, the shortest wavelength generated by phase matching in nonlinear crystals, 1008804 (20 February 2017); doi: 10.1117/12.2249976
Proc. SPIE 10088, Compact, integrable, and long life time Raman multiline UV-Vis source based on hypocycloid core Kagome HC-PCF, 1008805 (20 February 2017); doi: 10.1117/12.2251857
Proc. SPIE 10088, 100µJ-level single frequency linearly-polarized nanosecond pulsed laser at 775 nm (Conference Presentation), 1008806 (); doi: 10.1117/12.2251664
Proc. SPIE 10088, Intracavity frequency-doubled degenerate laser (Conference Presentation), 1008807 (); doi: 10.1117/12.2251503
Proc. SPIE 10088, Picosecond pulsed micro-module emitting near 560 nm using a frequency doubled gain-switched DBR ridge waveguide semiconductor laser, 1008808 (20 February 2017); doi: 10.1117/12.2250145
Frequency Combs with Optical Resonators II: Joint Session with Conferences 10088 and 10090
Proc. SPIE 10088, Instantaneous spectral span of 2.85 - 8.40 µm achieved in a Cr:ZnS laser pumped subharmonic OPO, 1008809 (20 February 2017); doi: 10.1117/12.2256046
Supercontinuum and Raman Generation
Proc. SPIE 10088, Experimental investigation of mid-infrared supercontinuum generation in chalcogenide step-index optical fibers, 100880B (20 February 2017); doi: 10.1117/12.2255680
Proc. SPIE 10088, Supercontinuum comb sources for broadband communications based on AlGaAs-on-insulator, 100880C (20 February 2017); doi: 10.1117/12.2256032
Proc. SPIE 10088, All-fiber supercontinuum source with flat, high power spectral density in the range between 1.1 µm to 1.4 µm based on an Yb3+ doped nonlinear photonic crystal fiber, 100880E (20 February 2017); doi: 10.1117/12.2252259
Proc. SPIE 10088, High-power mid-infrared fiber-based supercontinuum sources (Conference Presentation), 100880F (); doi: 10.1117/12.2255954
Proc. SPIE 10088, Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber, 100880G (20 February 2017); doi: 10.1117/12.2253706
Proc. SPIE 10088, High power Raman-converter based on H2-filled inhibited coupling HC-PCF, 100880H (20 February 2017); doi: 10.1117/12.2251846
Nonlinear Optical Devices and Techniques I
Proc. SPIE 10088, Upconversion based spectral imaging in 6 to 8 µm spectral regime, 100880I (20 February 2017); doi: 10.1117/12.2250538
Proc. SPIE 10088, Broadband upconversion imaging around 4 µm using an all-fiber supercontinuum source, 100880J (20 February 2017); doi: 10.1117/12.2251805
Proc. SPIE 10088, Investigation of mid-IR picosecond image upconversion, 100880L (20 February 2017); doi: 10.1117/12.2251107
Proc. SPIE 10088, Cross-propagating beam-deflection measurements of third-order nonlinear optical susceptibility, 100880N (20 February 2017); doi: 10.1117/12.2251451
Nonlinear Optical Devices and Techniques II
Proc. SPIE 10088, Quantum superradiant amplification in rubidium vapors: gain assessment, 100880Q (20 February 2017); doi: 10.1117/12.2252836
Proc. SPIE 10088, Measurement of the second order nonlinear optical coefficient of GaAs, GaP and InGaAs (Conference Presentation), 100880R (); doi: 10.1117/12.2256697
New Nonlinear Materials
Proc. SPIE 10088, Development of orientation-patterned GaP grown on foreign substrates for QPM frequency conversion devices, 100880U (20 February 2017); doi: 10.1117/12.2250639
Proc. SPIE 10088, Broadband midinfrared from fiber laser difference frequency generation in OP-GaP, 100880V (20 February 2017); doi: 10.1117/12.2250392
Proc. SPIE 10088, Continuous-wave difference frequency generation in the mid-infrared with orientation-patterned gallium phosphide (OP-GaP) crystals, 100880W (20 February 2017); doi: 10.1117/12.2251334
Optical Parametric Devices and Applications I
Proc. SPIE 10088, Molecular spectroscopy from 5-12 µm using an OP-GaP OPO, 100880Y (20 February 2017); doi: 10.1117/12.2255892
Proc. SPIE 10088, Single-frequency tunable long-wave infrared OP-GaAs OPO for gas sensing, 100880Z (20 February 2017); doi: 10.1117/12.2255620
Proc. SPIE 10088, Frequency down-conversion of 1 µm laser radiation to the mid-IR using non-oxide nonlinear crystals in a cascaded intracavity configuration, 1008810 (20 February 2017); doi: 10.1117/12.2255643
Proc. SPIE 10088, Efficient cascaded half-harmonic generation of mid-IR frequency combs (Conference Presentation), 1008811 (); doi: 10.1117/12.2255692
Optical Parametric Devices and Applications II
Proc. SPIE 10088, Large-scale artificial spin network based on time-multiplexed degenerate optical parametric oscillators for coherent Ising machine, 1008812 (20 February 2017); doi: 10.1117/12.2255796
Proc. SPIE 10088, Nonlinear frequency conversion of structured beams and Airy beam optical parametric oscillator, 1008813 (20 February 2017); doi: 10.1117/12.2254969
Proc. SPIE 10088, Dispersion tuning of a narrow-linewidth picosecond OPO based on chirped quasi-phase matching with a volume Bragg grating, 1008814 (20 February 2017); doi: 10.1117/12.2252168
Proc. SPIE 10088, Combined visible and near-infrared OPA for wavelength scaling experiments in strong-field physics, 1008815 (20 February 2017); doi: 10.1117/12.2250775
Poster Session
Proc. SPIE 10088, Nonlinear mode conversion for intermodal four-wave mixing Stokes and anti-Stokes in a multimode fiber, 1008817 (20 February 2017); doi: 10.1117/12.2252729
Proc. SPIE 10088, Modulation of frequency doubled DFB-tapered diode lasers for medical treatment, 100881A (20 February 2017); doi: 10.1117/12.2250337
Back to Top