PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.
This proposal outlines an action plan for risk management in the Delaware Valley Metropolitan Region. This plan is consistent with the goals for strengthening homeland security announced by President Bush, and is designed to complement efforts currently under development by Pennsylvania Emergency Management Agency and Department of Health. This plan proposes the formation of a Delaware Valley Risk Management Consortium, representing the critical disciplines and organizations related to risk assessment and management. This group would have membership from academic institutions, government agencies, industry, and nonprofit organizations. This Consortium would develop a systemic scope of work with the appropriate recommendations for technology acquisition, development and integration with risk management policies and procedures. This scope of work would include the development of two related information systems for the Delaware Valley Region. The first would be a comprehensive 'health monitoring' system to assess the continuity of operations, which would use integrated remote sensing and imaging, information gathering, communication, computation, and, information processing and management over wide-area networks covering the entire metropolitan area. The second would use real-time information from the health monitoring system to support interactive communication, search and information exchange needed to coordinate action among the relevant agencies to mitigate risk, respond to hazards and manage its resources efficiently and effectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Enhancing Measurements for Homeland Security Applications
Sweden has been intensively developing methods for long term storage of spent fuel from the nuclear power plants for twenty-five years. A dedicated research program has been initiated and conducted by the Swedish company SKB (Swedish Nuclear Fuels and Waste Management Co.). After the interim storage SKB plans to encapsulate spent nuclear fuel in copper canisters that will be placed at a deep repository located in bedrock. The canisters filled with fuel rods will be sealed by an electron beam weld. This paper presents three complementary NDE techniques used for assessing the sealing weld in copper canisters, radiography, ultrasound, and eddy current. A powerful X-ray source and a digital detector are used for the radiography. An ultrasonic array system consisting of a phased ultrasonic array and a multi-channel electronics is used for the ultrasonic examination. The array system enables electronic focusing and rapid electronic scanning eliminating the use of a complicated mechanical scanner. A specially designed eddy current probe capable of detecting small voids at the depth up to 4 mm in copper is used for the eddy current inspection. Presently, all the NDE techniques are verified in SKB's Canister Laboratory where full scale canisters are welded and examined.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Screening Technologies for Homeland Security Applications
The Pacific Northwest National Laboratory (PNNL) has developed a portable, battery-operated, handheld ultrasonic device that provides non-invasive container interrogation and material identification capabilities. The technique governing how the acoustic inspection device (AID) functions, involves measurements of ultrasonic pulses (0.1 to 5 MHz) that are launched into a container or material. The return echoes from these pulses are analyzed in terms of time-of-flight and frequency content to extract physical property measurements (the acoustic velocity and attenuation coefficient) of the material under test. The AID performs an automated analysis of the return echoes to identify the material, and detect contraband in the form of submerged packages and concealed compartments in liquid filled containers and solid-form commodities. An inspector can quickly interrogate outwardly innocuous commodity items such as shipping barrels, tanker trucks, and metal ingots. The AID can interrogate container sizes ranging from approximately 6 inches in diameter to over 96 inches in diameter and allows the inspector to sort liquid and material types into groups of like and unlike; a powerful method for discovering corrupted materials or miss-marked containers co-mingled in large shipments. This manuscript describes the functionality, capabilities and measurement methodology of the technology as it relates to homeland security applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
High Energy X-ray cargo screening is a mature technology that has proven its value in the detection of contraband material hidden within cargo including fully loaded sea containers. To date high energy screening has been largely applied to manifest verification and to drug detection. However, the dramatic change in world terrorism has altered the application. Now it is essential that weapons of mass destruction (WMD’s) be interdicted with incredibly high accuracy. The implication of a missed detection has gone from loss of revenue or the lowering of the street price of drugs to potentially stopping, at least for some significant time, most world commerce. Screening containers with high energy x-rays (~250+ mm of steel penetration) is capable of detecting all nuclear threats at a fraction of the strategically important mass. The screening operation can be automated so that no human decisions are required with very low false alarms. Finally, the goal of 100% inspection of cargo inbound to the United States from the twenty largest international ports is an achievable goal with hardware costs in the area of that already spent on airport security.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Full body, real-time, millimeter-wave imaging systems have been developed at the Pacific Northwest National Laboratory for the detection of body-worn, concealed weapons and contraband at security checkpoints. These security systems employ methods derived from microwave holography techniques that utilize phase and amplitude information recorded over a two-dimensional aperture to reconstruct a focused image of the target. Millimeter-wave imaging is well suited for the detection of concealed weapons or other contraband carried on personnel, since millimeter waves are non-ionizing, readily penetrate common clothing material, and are reflected from the human body and any concealed items. In this paper, wide-bandwidth, three-dimensional, holographic microwave imaging techniques and a full-body, planar, millimeter-wave imaging system are described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
X-ray systems dominate the installed base of airport baggage scanning systems for explosives detection. The majority are conveyer systems with projection line scanners. These systems can achieve a high throughput but exhibit a high false positive rate and require significant operator involvement. Systems employing computed
tomography (CT) are currently being installed at a rapid rate. These can provide good discrimination of levels of xray absorption coefficient and can largely circumvent superimposition effects. Nonetheless CT measures only x-ray absorption coefficient per voxel which does not provide a means of specific material identification resulting in many false positives, and it is relatively straightforward to configure explosive materials so that they are undetectable by CT systems. Diffraction-based x-ray systems present a solution to this problem. They detect and measure atomic layer spacings in crystalline and microcrystalline materials with high sensitivity. This provides a means of specific material identification. The majority of explosive compounds are well crystallized solids at room temperature. X-ray diffraction systems using both conventional wavelength-dispersive diffraction and fixed-angle, multi-wavelength diffraction for improved throughput are described. Large-area, flat-panel x-ray detector technology coupled with an extended x-ray source will permit a full 3D volumetric x-ray diffraction scan of a bag in a single pass, (patent pending).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Cross correlation analysis of digitised grey scale patterns is based on - at least - two images which are compared one to each other. Comparison is performed by means of a two-dimensional cross correlation algorithm applied to a set of local intensity submatrices taken from the pattern matrices of the reference and the comparison images in the surrounding of predefined points of interest.
Established as an outstanding NDE tool for 2D and 3D deformation field analysis with a focus on micro- and nanoscale applications (microDAC and nanoDAC), the method exhibits an additional potential for far wider applications, that could be used for advancing homeland security. Cause the cross correlation algorithm in some kind seems to imitate some of the "smart" properties of human vision, this "field-of-surface-related" method can provide alternative solutions to some object and process recognition problems that are difficult to solve with more classic "object-related" image processing methods. Detecting differences between two or more images using cross correlation techniques can open new and unusual applications in
identification and detection of hidden objects or objects with unknown origin, in movement or displacement field analysis and in some aspects of biometric analysis, that could be of special interest for homeland security.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A personal authentication method is proposed by integrating palmar geometry with the palmar and finger flexion crease analysis. A 900 x 900 image of either palm, placed freely on the flat transparent plate, is captured. Feature extraction involves: area, width and perimeter of the palm; areas, perimeters, skeletal axes and their lengths of the four fingers; shape factors of the palm and the fingers derived from the areas and the perimeters; aspect ratios; lengths of all of the finger flexion creases; intersecting points of the finger axes and the finger flexion creases; intersecting points of the finger axes and the major palmar flexion creases, those are prominent and typically classified into the thenar crease, the proximal transverse crease and the distal transverse crease. Some minor or secondary flexion creases are additionally detected. Orientation of the crease at each point of intersection is also detected. These metrics define the feature vectors for matching. We have tested the method on a limited set of palm images collected in a laboratory environment. Matching results, especially featured the oriented intersecting points of palmar creases, are encouraging. This integration with the palmar feature extraction will contribute to a more robust and reliable authentication system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper, a novel method of Regional Facial Geometric Feature Recognition (RFGFR) is presented. With the development of biometrics technology, the recognition of human-face becomes the most acceptant way of identification. Based on the consideration that China is such a country with expansive regions, numerous peoples and different facial geometric structures and features, the six geographic regions based on facial geometric features have been classified according to China Administrative District. The 300 front face images of the Han nationality in the classified six regions have been sampled and registered into a face image gallery through a 3-D digital camera system. Subsequently, some geometric features (distance between two pupils, ratio of distance between two inner canthi to distance between two pupils and etc.) have been extracted and used as the facial feature recognition parameters. Furthermore, through lots of recognition experiments, we found that the Han people in different regions have different facial features to some extent. As a result, the feasibility and reliability of the RFGFR method are finally verified.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
Sensing Technologies for Homeland Security Applications
The Sensory Research Institute at the Florida State University has quantitatively characterized a chemical residue detection system with adaptive neural net data processing. Two separate configurations, "Stormy" and "Gaea", were trained by exposure to decreasing amounts of n-amyl acetate from chemical emitters randomly distributed among a collection of non-emitters. The concentration of chemical in the sampled air stream was controlled precisely. The detection threshold for "Stormy" was 1.14 ppt; that for "Gaea" was 1.9 ppt. Cycle time for sampling and chemical analysis of each sample port was on the order of seconds. Possible effects on the sensors of environmental factors such as ambient humidity, temperature, and air velocity were not considered. Besides processing individual air sample data, the neural nets can sense concentration gradients and track to chemical source. The adaptive neural nets are accessed by a voice recognition system and are capable of point testing or free-ranging search. The service life of the detectors, the neural net processors, and auxiliary packaging is approximately 8 years under normal field use. Maintenance requires a good quality kibble and an occasional romp in the park.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A major challenge confronting emergency response, border control, and other security-related functions is the accurate, rapid, and safe identification of potentially hazardous chemicals outside a laboratory environment. Raman spectroscopy is a rapid, non-intrusive technique that can be used to confidently identify many classes of hazardous and potentially explosive compounds based on molecular vibration information. Advances in instrumentation now allow reliable field - portable measurements to be made. Before the Raman technique can be effectively applied and be accepted within the scientific community, realistic studies must be performed to develop methods, define limitations, and rigorously evaluate its effectiveness. Examples of a variety of chemicals (including neat and diluted chemical warfare [CW] agents, a CW agent precursor, a biological warfare (BW)-related compound, an illicit drug, and explosives) identified using Raman spectroscopy in various types of containers and on surfaces are given, as well as results from a blind field test of 29 unknown samples which included CW agent precursors and/or degradation products, solvents associated with CW agent production, pesticides, explosives, and BW toxins (mostly mycotoxins). Additionally, results of experimental studies to evaluate the analysis of flammable organic solvents, propellants, military explosives, mixtures containing military explosives, shock-sensitive explosives, and gun powders are described with safety guidelines. Spectral masks for screening unknown samples for explosives and nerve agents are given.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
This contribution describes the components necessary for measurement of the three-dimensional local position of objects with high accuracy and high measurement rate. The methodology is based on the FMCW (frequency modulated continuous wave) technology in state of the art technology described as sensor system. A high speed real-time network collects data and transfers it to a master processing unit (MPU) where 3-D position data is calculated. It is described how to measure and how to process position data for a local, wide area measurement system. Results are shown for a series of static measurements and an outdoor Motocross race.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
In this paper a novel local position measurement (LPM) technology is presented. The LPM system operates in the 5GHz ISM band and consists of lightweight transponders of which the 3-D position is measured, and base stations located around the measurement field. Transponder and base stations operate similar to conventional radar systems and consist of RF electronics as well as signal processing elements. The RF-part in the transponders is the key element for the position measurement system. The measurement accuracy of the LPM system is in the range of some centimeters despite a high measurement rate of 1000 measurements per second.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
A Miniature Mass Spectrometer (MMS) with an array detector has been developed at the Jet Propulsion Laboratory (JPL). The spectrometer has a focal plane geometry, and an array detector that can measure the intensities of different masses simultaneously after their separation along the focal plane. In the past, the large mass, size and the lack of an array detector with high gain (such as an electron multiplier) did not allow the application of focal plane mass spectrometer to the measurement that required high sensitivity and portability. In the JPL developed-MMS, miniaturization has been accomplished by using rare earth magnet material and novelties in the design of the magnetic and electric sectors. A new ion detector was developed for the measurement of the intensities of different mass ions. The array detector is based on the conversion sequence of ions into electrons into photons and their final measurement by a photon array detector. MMS possesses high sensitivity, specificity, and fast response time and can be used as a universal chemical analyzer. It will find application in a variety of Home Defense tasks. MMS is presently being applied for the detection of propellants (hydrazine and its derivatives). The instrument will have a mass of 1-2 kg and consume a power of 2-4 W for operation
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
September 11th awakened us to the massive damage terrorists can cause with airplanes by bringing down the twin towers of World Trade Center and damaging Wedge-1 of the Pentagon. These incidents represent the worst disaster and loss of lives ever involving a single building structure. The South tower collapsed 56 minutes after the impact, and the North tower collapsed 1 hour and 43 minutes after the impact. Stronger and more durable building materials, as well as fully equipped sensor network monitoring systems may be able to limit structural damages and save lives in the future. America is now facing a great challenge in homeland security, we must build the national measurement infrastructure and develop new technologies that will protect our national infrastructure, strengthen homeland security, and help combat terrorism. The development of Smart Advanced Materials and Structural Systems technologies is one of the key challenges to meeting our national needs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.