Proceedings Volume 6924 is from: Logo
SPIE ADVANCED LITHOGRAPHY
24-29 February 2008
San Jose, California, United States
Front Matter
Proc. SPIE 6924, Front Matter: Volume 6924, 692401 (23 April 2008); doi: 10.1117/12.797489
Keynote Session
Proc. SPIE 6924, If it moves, simulate it!, 692402 (23 April 2008); doi: 10.1117/12.782310
Proc. SPIE 6924, Interactions of double patterning technology with wafer processing, OPC and design flows, 692403 (20 March 2008); doi: 10.1117/12.778267
Proc. SPIE 6924, Toward 3nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography, 692404 (11 April 2008); doi: 10.1117/12.782311
Double Masking I
Proc. SPIE 6924, A study of CD budget in spacer patterning technology, 692406 (1 April 2008); doi: 10.1117/12.773565
Proc. SPIE 6924, Double patterning for 32nm and below: an update, 692408 (18 March 2008); doi: 10.1117/12.772780
Proc. SPIE 6924, Split and design guidelines for double patterning, 692409 (1 April 2008); doi: 10.1117/12.774104
Double Masking II
Proc. SPIE 6924, Double patterning combined with shrink technique to extend ArF lithography for contact holes to 22nm node and beyond, 69240A (1 April 2008); doi: 10.1117/12.772024
Proc. SPIE 6924, Negative and iterated spacer lithography processes for low variability and ultra-dense integration, 69240B (11 April 2008); doi: 10.1117/12.772049
Proc. SPIE 6924, Double patterning of contact array with carbon polymer, 69240C (7 March 2008); doi: 10.1117/12.771092
Proc. SPIE 6924, PDL oxide enabled pitch doubling, 69240D (12 March 2008); doi: 10.1117/12.771514
Low-k1 Lithography I
Proc. SPIE 6924, Pixelated phase mask as novel lithography RET, 69240E (7 March 2008); doi: 10.1117/12.772116
Proc. SPIE 6924, Mask optimization for arbitrary patterns with 2D-TCC resolution enhancement technique, 69240F (7 March 2008); doi: 10.1117/12.771943
Proc. SPIE 6924, Comparative study of binary intensity mask and attenuated phase shift mask using hyper-NA immersion lithography for sub-45nm era, 69240H (7 March 2008); doi: 10.1117/12.772246
Low-k1 Lithography II
Proc. SPIE 6924, Integration of pixelated phase masks for full-chip random logic layers, 69240I (7 March 2008); doi: 10.1117/12.771677
Proc. SPIE 6924, Applications of TM polarized illumination, 69240J (12 March 2008); doi: 10.1117/12.775739
Proc. SPIE 6924, Enabling technology scaling with "in production" lithography processes, 69240K (7 March 2008); doi: 10.1117/12.776484
Proc. SPIE 6924, Hyper-NA imaging of 45nm node random CH layouts using inverse lithography, 69240L (7 March 2008); doi: 10.1117/12.771961
Proc. SPIE 6924, Patterning strategy and performance of 1.3NA tool for 32nm node lithography, 69240M (1 April 2008); doi: 10.1117/12.772201
Double Masking III
Proc. SPIE 6924, Post-decomposition assessment of double patterning layout, 69240O (12 March 2008); doi: 10.1117/12.772891
Proc. SPIE 6924, Alternative process schemes for double patterning that eliminate the intermediate etch step, 69240P (1 April 2008); doi: 10.1117/12.771884
Proc. SPIE 6924, Double patterning down to k1=0.15 with bilayer resist, 69240Q (7 March 2008); doi: 10.1117/12.772750
Proc. SPIE 6924, Double patterning requirements for optical lithography and prospects for optical extension without double patterning, 69240R (7 March 2008); doi: 10.1117/12.771914
Simulation I
Proc. SPIE 6924, Making a trillion pixels dance, 69240S (7 March 2008); doi: 10.1117/12.773248
Proc. SPIE 6924, Validation of inverse lithography technology (ILT) and its adaptive SRAF at advanced technology nodes, 69240T (12 March 2008); doi: 10.1117/12.775084
Proc. SPIE 6924, General imaging of advanced 3D mask objects based on the fully-vectorial extended Nijboer-Zernike (ENZ) theory, 69240U (7 March 2008); doi: 10.1117/12.771872
Proc. SPIE 6924, Radiometric consistency in source specifications for lithography, 69240V (11 April 2008); doi: 10.1117/12.775121
Proc. SPIE 6924, Coupled-dipole modelling for 3D mask simulation, 69240W (1 April 2008); doi: 10.1117/12.772572
Simulation II
Proc. SPIE 6924, Generalized inverse problem for partially coherent projection lithography, 69240X (7 March 2008); doi: 10.1117/12.772040
Proc. SPIE 6924, Massively-parallel FDTD simulations to address mask electromagnetic effects in hyper–NA immersion lithography, 69240Y (20 March 2008); doi: 10.1117/12.774443
Proc. SPIE 6924, Polarization characteristics of state-of-art lithography optics reconstructed from on-body measurement, 69240Z (7 March 2008); doi: 10.1117/12.771812
Proc. SPIE 6924, Extended Nijboer-Zernike (ENZ) based mask imaging: efficient coupling of electromagnetic field solvers and the ENZ imaging algorithm, 692410 (7 March 2008); doi: 10.1117/12.772497
Proc. SPIE 6924, Evaluating the accuracy of a calibrated rigorous physical resist model under various process and illumination conditions, 692411 (7 March 2008); doi: 10.1117/12.772766
High Index Immersion Lithography
Proc. SPIE 6924, High refractive index materials design for the next generation ArF immersion lithography, 692412 (23 April 2008); doi: 10.1117/12.771122
Proc. SPIE 6924, Studies of high index immersion lithography, 692413 (7 March 2008); doi: 10.1117/12.771622
Proc. SPIE 6924, High-n immersion lithography, 692415 (7 March 2008); doi: 10.1117/12.773071
Proc. SPIE 6924, High-index immersion lithography: preventing lens photocontamination and identifying optical behavior of LuAG, 692416 (7 March 2008); doi: 10.1117/12.771462
Proc. SPIE 6924, High-index immersion fluids enabling cost-effective single-exposure lithography for 32 nm half pitches, 692417 (12 March 2008); doi: 10.1117/12.772105
Process I
Proc. SPIE 6924, Immersion defectivity study with volume production immersion lithography tool for 45 nm node and below, 692418 (17 March 2008); doi: 10.1117/12.772270
Proc. SPIE 6924, Focus, dynamics, and defectivity performance at wafer edge in immersion lithography, 692419 (12 March 2008); doi: 10.1117/12.771598
Proc. SPIE 6924, The rapid introduction of immersion lithography for NAND flash: challenges and experience, 69241A (11 April 2008); doi: 10.1117/12.772448
Proc. SPIE 6924, Immersion defect performance and particle control method for 45nm mass production, 69241B (7 March 2008); doi: 10.1117/12.774672
OPC and Mask Technology
Proc. SPIE 6924, Development of a computational lithography roadmap, 69241C (12 March 2008); doi: 10.1117/12.773060
Proc. SPIE 6924, Analysis of OPC optical model accuracy with detailed scanner information, 69241D (11 April 2008); doi: 10.1117/12.774116
Proc. SPIE 6924, Hybrid Hopkins-Abbe method for modeling oblique angle mask effects in OPC, 69241E (20 March 2008); doi: 10.1117/12.776731
Proc. SPIE 6924, Robust PPC and DFM methodology for exposure tool variations, 69241F (17 March 2008); doi: 10.1117/12.771387
Proc. SPIE 6924, Fabrication of defect-free full-field pixelated phase mask, 69241G (7 March 2008); doi: 10.1117/12.772955
Proc. SPIE 6924, Advanced OPC and 2D verification for tip engineering using aggressive illuminations, 69241H (1 April 2008); doi: 10.1117/12.773021
Process II
Proc. SPIE 6924, Optimization procedure of exposure tools with polarization aberrations, 69241I (1 April 2008); doi: 10.1117/12.771962
Proc. SPIE 6924, Proposal for determining exposure latitude requirements, 69241J (1 April 2008); doi: 10.1117/12.772711
Proc. SPIE 6924, Influence of shot noise on CDU with DUV, EUV, and E-beam, 69241K (17 March 2008); doi: 10.1117/12.776776
Proc. SPIE 6924, Determining DOF requirements needed to meet technology process assumptions, 69241L (7 March 2008); doi: 10.1117/12.773070
Proc. SPIE 6924, Extending scatterometry to the measurements of sub 40 nm features, double patterning structures, and 3D OPC patterns, 69241M (1 April 2008); doi: 10.1117/12.776783
Lithography Tools I
Proc. SPIE 6924, Recent performance results of Nikon immersion lithography tools, 69241N (7 March 2008); doi: 10.1117/12.771823
Proc. SPIE 6924, Performance of the FPA-7000AS7 1.35 NA immersion exposure system for 45-nm mass production, 69241O (7 March 2008); doi: 10.1117/12.771876
Proc. SPIE 6924, Latest developments on immersion exposure systems, 69241P (7 March 2008); doi: 10.1117/12.774958