8 December 1977 Incoherent Optical Signal Processing Using Charge-Coupled Devices (CCDs)
Author Affiliations +
This paper will discuss the capabilities of a new signal processing device consisting of a light-emitting diode (LED), a photographic mask, and an area-array charge-coupled device (CCD). Such a processor can perform a broad variety of useful one-dimensional operations including linear transformation (e.g., Fourier, Walsh, Hankel), multi-channel cross-correlation, filtering, and high-density read-only memory. Any desired window function can be designed into the mask and any desired amount of window overlap can be obtained by appropriate clocking of the CCD. Its strengths include high-speed, compact size, ruggedness, reliability, and potential low cost. However, as in other analog sampled-data systems, its accuracy is moderate (the equivalent of about 8 to 10 bits). The incorporation of a real-time programmable mask into this system expands its capabilities into the nonlinear and recursive filter-ing realms (in addition to programmable versions of the above-mentioned linear operations) at the expense of system size, complexity and cost. In many applications the numerical computation capability of such a processor far surpasses that of its conventional electronic digital counterparts.
© (1977) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Keith Bromley, Keith Bromley, Michael A. Monahan, Michael A. Monahan, Richard P. Bocker, Richard P. Bocker, Anthony C. H. Louie, Anthony C. H. Louie, Richard D. Martin, Richard D. Martin, } "Incoherent Optical Signal Processing Using Charge-Coupled Devices (CCDs)", Proc. SPIE 0118, Optical Signal and Image Processing, (8 December 1977); doi: 10.1117/12.955681; https://doi.org/10.1117/12.955681


Back to Top