24 February 1982 Analysis Of Laryngeal Biomechanics Of Deaf Speakers Utilizing High-Speed Cinematography
Author Affiliations +
Since the formalization of the myoelastic-aerodynamic theory of vocal fold vibration, it has been generally accepted that biomechanical and aerodynamic forces determine the nature of vocal fold vibration patterns, speaking fundamental frequency and vocal intensity. The speech of the deaf is frequently characterized by abnormal voice qualities and aberrant frequency and intensity variations suggesting mismanagement of the biomechanical and aerodynamic forces acting on the larynx. Unfortunately, efforts to remediate these abnormal laryngeal activities are frequently ineffective. It is reasonable to suggest that more effective remedial strategies could be developed if we had a better understanding of the underlying nature of the problems deaf persons experience when trying to control laryngeal functioning for speech purposes. Toward this end, we are employing high speed laryngeal filming procedures in conjunction with glottal impedance, respiratory kinematic and acous-tical measurement procedures to assess abnormal laryngeal functioning of deaf speakers. All data are collected simultaneously and are time-locked to facilitate analysis of specific laryngeal events. This unique combination of instrumentation has provided important insights regarding laryngeal functioning of the deaf. For example, we have observed that deaf speakers may assume abnormal glottal configurations during phonation that pro-hibit normal laryngeal functioning and disturb upper airway dynamics. Also, normal vibratory patterns are frequently disturbed. Instrumentation, data collection protocols, analysis procedures and selected findings will be discussed.
© (1982) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Dale Evan Metz, Dale Evan Metz, Robert L. Whitehead, Robert L. Whitehead, } "Analysis Of Laryngeal Biomechanics Of Deaf Speakers Utilizing High-Speed Cinematography", Proc. SPIE 0291, 2nd Intl Symp of Biomechanics Cinematography and High Speed Photography, (24 February 1982); doi: 10.1117/12.932320; https://doi.org/10.1117/12.932320

Back to Top