27 February 1984 Some Statistical Properties Of The Median Window
Author Affiliations +
Proceedings Volume 0373, Transformations in Optical Signal Processing; (1984) https://doi.org/10.1117/12.934553
Event: Transformations in Optical Signal Processing, 1981, Seattle, United States
Abstract
Abstract. The median window operation is being increasingly used to process images. Although the deterministic properties of the median are fairly well known, its statistical properties are not. Consider a median window of width N scanning a noisy background image with white power spectrum. We present here the probability law for the median outputs, its mean, variance, and signal-to-noise ratio, and the probability that two successive median outputs are equal. Specialization is made to speckle imagery. Key results are as follows: the probability law is of a Bernoulli multinomial form; the mean is asymptotic with N to the average background times In 2, and hence is about 30% less than the background value; the variance is asymptotic with N to a 1/N dependence; signal-to-noise ratio is asymptotic with N to Ni171 In 2. Finally, the probability that two successive median outputs are equal is 2-1(N-1)/N, or slightly less than 0.5 for N ⪆ 7. This is independent of the type of image data at hand, i.e., whether speckle, Poisson, or normal, provided that it has a white power spectrum.
© (1984) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
B. Roy Frieden, B. Roy Frieden, } "Some Statistical Properties Of The Median Window", Proc. SPIE 0373, Transformations in Optical Signal Processing, (27 February 1984); doi: 10.1117/12.934553; https://doi.org/10.1117/12.934553
PROCEEDINGS
6 PAGES


SHARE
Back to Top