Paper
17 January 1985 An Imaging Tactile Sensor With Magnetostrictive Transduction
Ren-Chyuan Luo, Fuling Wang, You-xing Liu
Author Affiliations +
Proceedings Volume 0521, Intelligent Robots and Computer Vision; (1985) https://doi.org/10.1117/12.946191
Event: 1984 Cambridge Symposium, 1984, Cambridge, United States
Abstract
The objective of this paper is to describe a novel development for an imaging tactile sensing system. At the heart of this sensor is a magnetostrictive transductor using amorphous ferromagnetic material VITROVAC4040. The principle of the sensor, the construction, performance and its prospective applications are described. An imaging tactile sensor with hundreds of force sensors fits into a space the size of a fingertip. Each magnetoelastic force sensor is constructed as a transformer-pressductor type. The sensor yields an array of 256 individual data points with a center-to-center distance of 2.5 mm. A flat elastmetric contact surface is mounted over the sensing array to protect the sites from contamination. The magnetoelastic material is potentially good for force feedback and tactile imaging sensors because of its outstanding sensitivity, wide dynamic range, good linearity, low hysteresis and low temperature error. The sensor has been successfully tested using two objects to be recognized, and the results have been illustrated.
© (1985) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ren-Chyuan Luo, Fuling Wang, and You-xing Liu "An Imaging Tactile Sensor With Magnetostrictive Transduction", Proc. SPIE 0521, Intelligent Robots and Computer Vision, (17 January 1985); https://doi.org/10.1117/12.946191
Lens.org Logo
CITATIONS
Cited by 13 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Sensors

Robot vision

Magnetic sensors

Image sensors

Machine vision

Sensing systems

Multiplexers

RELATED CONTENT


Back to Top