You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
29 January 1988Automatic Deconvolution And Phase Retrieval
The close relationship between Fourier phase retrieval and blind deconvolution is discussed. In this paper we show how advances made in phase retrieval can be successfully applied to solving problems requiring blind deconvolution. Firstly we describe how Fienup's iterative algorithms can be used as the first stage in a deconvolution strategy. In contrast to earlier direct techniques, which all appear to be very susceptible to noise, the deconvolution algorithm presented herein is capable of image recovery in the presence of appreciable noise. Secondly we discuss an extension to our zero-and-add technique which incorporates the greatly increased informational content in the zeros of multi-dimensional, as opposed to one-dimensional, images. It appears that the concept of zero-sheets can be invoked to improve the robustness of zero-and-add.
The alert did not successfully save. Please try again later.
R. H.T. Bates, R. G. Lane, "Automatic Deconvolution And Phase Retrieval," Proc. SPIE 0828, Digital Image Recovery and Synthesis, (29 January 1988); https://doi.org/10.1117/12.942094