Translator Disclaimer
22 August 1988 Extension Of Synthetic Estimation Filters For Relative Position Measurements
Author Affiliations +
Abstract
The use of optical correlators for the measurement of an object's pose presents somewhat different problems than the classic object recognition problem. For example, the correlation amplitude is dependent on the in-plane rotation of 'the input object relative to the matched filter (an even more prominent condition with phase-only filters). In pattern recognition, it is desirable to construct a composite filter which is invariant to rotation so that the object will be identified no matter what its input rotation value is. On the other hand, the rotation may be one of the parameters to be determined during a docking scenario. Juday and Monroe have proposed to construct synthetic estimation filters (SEF's) designed to reduce the number of required filters, and also allow interpolations for the positional parameters between the views from which the filters were made. Preliminary work considered only in-plane rotation and used high contrast images. In this paper we report constructing SEF's for an out of plane rotation (yaw) and the consequences of using more realistic images.
© (1988) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Stanley E. Monroe Jr. and Richard D. Juday "Extension Of Synthetic Estimation Filters For Relative Position Measurements", Proc. SPIE 0938, Digital and Optical Shape Representation and Pattern Recognition, (22 August 1988); https://doi.org/10.1117/12.976600
PROCEEDINGS
8 PAGES


SHARE
Advertisement
Advertisement
Back to Top