You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 October 2016Comparative analysis of recent satellite missions for multi-temporal SAR interferometry
Multi-temporal InSAR (MTI) applications pose challenges related to the availability of coherent scattering from the ground surface, the complexity of the ground deformations, the atmospheric artifacts, the visibility problems related to the ground elevation. Nowadays, several satellite missions are available providing interferometric SAR data at different wavelengths, spatial resolutions, and revisit time. A new interesting opportunity is provided by Sentinel-1 mission, which has a spatial resolution comparable to previous ESA C-band missions, and revisit times reduced to up to 6 days. It is envisioned that, by offering regular, global-scale coverage, improved temporal resolution and freely available imagery, Sentinel-1 will guarantee an increasing use of MTI for ground displacement investigations. According to these different SAR space-borne missions, the present work discusses current and future opportunities of MTI applications to ground instability monitoring. Issues related to coherent target detection and mean velocity precision will be addressed through a simple theoretical model assuming backscattering mechanisms related to point scatterers. The paper also presents an example of multi-sensor ground instability investigation over the site of Marina di Lesina, Southern Italy, a village lying over a gypsum diapir, where a hydration process, involving the underlying anhydride, causes a smooth uplift pattern affecting the entire village area, and the formation of scattered sinkholes. More than 20 years of MTI SAR data have been used, coming from both legacy ERS and ENVISAT missions, and last-generation Radarsat-2, COSMO-SkyMed, and Sentinel-1A sensors.
The alert did not successfully save. Please try again later.
Fabio Bovenga, Alberto Refice, Antonella Belmonte, Guido Pasquariello, "Comparative analysis of recent satellite missions for multi-temporal SAR interferometry," Proc. SPIE 10003, SAR Image Analysis, Modeling, and Techniques XVI, 100030B (18 October 2016); https://doi.org/10.1117/12.2240490