Front Matter: Volume 10033
Eighth International Conference on Digital Image Processing (ICDIP 2016)

Charles M. Falco
Xudong Jiang
Editors

20–23 May, 2016
Chengdu, China

Sponsored by
Sichuan Province Computer Federation (China)
International Association of Computer Science and Information Technology (Singapore)
Chengdu University of Information Technology (China)
Chinese Academy of Sciences Chengdu Institute of Computer Applications (China)

Assisted by
Sichuan University (China)
Southwest Jiaotong University (China)
University of Electronics Science and Technology of China (China)
Chengdu Young Electrician Consulting Company Ltd. (China)

Published by
SPIE

Volume 10033
Part One of Two Parts
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISBN: 9781510605039

ISSN: 1996-756X (electronic)
ISBN: 9781510605046

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2016, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/16/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

Authors

Conference Committee

Introduction

Part One

SESSION 1 FEATURE DETECTION AND MATCHING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 02</td>
<td>An algorithm of LiDAR building outline extraction by Delaunay triangle</td>
<td>10033-239</td>
</tr>
<tr>
<td>10033 03</td>
<td>Deployment of vehicular edge clouds: lessons and challenges</td>
<td>10033-240</td>
</tr>
<tr>
<td>10033 04</td>
<td>An elastic image registration model based on FEM</td>
<td>10033-104</td>
</tr>
<tr>
<td>10033 05</td>
<td>Sub-pixel hard shadows anti-aliasing</td>
<td>10033-23</td>
</tr>
<tr>
<td>10033 06</td>
<td>A local space rotation invariant feature extraction method for facial interest points detection</td>
<td>10033-37</td>
</tr>
<tr>
<td>10033 07</td>
<td>A fusion algorithm of template matching based on infrared simulation image</td>
<td>10033-203</td>
</tr>
<tr>
<td>10033 08</td>
<td>Edge grouping based on Gestalt principles and spectral clustering</td>
<td>10033-111</td>
</tr>
<tr>
<td>10033 09</td>
<td>Paralleled Laplacian of Gaussian (LoG) edge detection algorithm by using GPU</td>
<td>10033-105</td>
</tr>
<tr>
<td>10033 0A</td>
<td>Extraction scenes point features on noisy digital images</td>
<td>10033-196</td>
</tr>
<tr>
<td>10033 0B</td>
<td>An evaluation method of ATR algorithm based on decision tree</td>
<td>10033-233</td>
</tr>
<tr>
<td>10033 0C</td>
<td>Two-step matching strategy combining global-local descriptor</td>
<td>10033-75</td>
</tr>
<tr>
<td>10033 0D</td>
<td>Research of methods for target extraction from ISAR image</td>
<td>10033-34</td>
</tr>
<tr>
<td>10033 0E</td>
<td>Feature extraction and image retrieval based on AlexNet</td>
<td>10033-33</td>
</tr>
</tbody>
</table>

SESSION 2 TARGET TRACKING AND DETECTION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 0F</td>
<td>Detection of range-distributed targets in compound Gaussian clutter without secondary data</td>
<td>10033-266</td>
</tr>
<tr>
<td>10033 0G</td>
<td>A robust object tracking algorithm in complex environment</td>
<td>10033-77</td>
</tr>
</tbody>
</table>
100330H An improved TLD object tracking algorithm [10033-159]
100330I Multi-orientation saliency features fusion based multi-object detection [10033-146]
100330J Moving target detection based on features matching of RGB on a foggy day [10033-44]
100330K Structure extraction and region contrast based salient object detection [10033-167]
100330L Fabric defect detection algorithm based on Gabor filter and low-rank decomposition [10033-139]
100330M A CFAR detector for prescreening region of interests in SAR images [10033-252]
100330N Detection and tracking of multi-space junk in star images [10033-82]
100330O A robust method for infrared small target based on saliency detection [10033-228]
100330P Weak target detection based on EMD and Hurst exponent [10033-187]
100330Q An improved parameter adaptive CS model for maneuvering target tracking [10033-31]
100330R Surface ship target detection in hyperspectral images based on improved variance minimum algorithm [10033-41]

SESSION 3

PATTERN RECOGNITION

100330S Towards 3D object recognition with contractive autoencoders [10033-55]
100330U A new pixel-based granular fusion method for finger recognition [10033-237]
100330V A real-time face recognition for class participation enrollment system over WebRTC [10033-151]
100330W Facial expression recognition based on adaptively weighted improved local binary pattern [10033-107]
100330X Investigating factorizations in everyday activity recognition [10033-32]
100330Y High-quality initial shape estimation for cascade shape regression [10033-214]
100330Z Fault diagnosis of aircraft hatch cover screws based on image recognition [10033-6]
1003310 Gait recognition system based on (2D)² PCA and HMM [10033-129]
1003311 Research of the properties of receptive field in handwritten Chinese character recognition based on DCNN model [10033-100]
1003312 A radar target recognition method based on MCC-TMM of adaptive frame division [10033-117]
SESSION 4 IMAGE SEGMENTATION

10033 13 EWGP: entropy-weighted Gabor and phase feature description for head pose estimation [10033-27]

10033 14 Design and performance of the classifier of the projectile body surface defect recognition system [10033-80]

10033 15 Neural analysis of bovine ovaries ultrasound images in the identification process of the corpus luteum: preliminary study [10033-253]

SESSION 4 IMAGE SEGMENTATION

10033 16 Improved local Gaussian distribution fitting energy model for image segmentation [10033-136]

10033 17 Peach fruit recognition method under natural environment [10033-176]

10033 18 Normal and tangent components normalization based GVF snake for image segmentation [10033-39]

10033 19 Image segmentation based on defomed multiresolution graph cuts [10033-63]

10033 1A Texture segmentation based on nonlinear compact multi-scale structure tensor and TV-flow [10033-43]

10033 1B Saliency guided region proposal [10033-154]

10033 1C Retinal automatic segmentation method based on prior information and optimized boundary tracking algorithm [10033-156]

10033 1D Object cutout from multiview images using level set of probabilities [10033-217]

10033 1E Convex hierarchical segmentation model for images with multi-component [10033-86]

10033 1F Improved optimal dichotomy algorithm for image segmentation [10033-175]

10033 1G Automated segmentation of nine retinal layers with layer thickness information on SD-OCT images [10033-115]

10033 1H Research of edge detection algorithm based on wavelet transformation [10033-94]

10033 1I Improved canny edge detection algorithm matches traffic signs [10033-171]

10033 1J Pedestrian segmentation in infrared images based on local autocorrelation [10033-10]

10033 1K Application of graph cut based active contour algorithm for contour extraction [10033-13]

10033 1L Image segmentation algorithm based on wavelet transformation and watershed [10033-205]

10033 1M Possibilities for the use of edge detection algorithms in the analysis of images of oilseed rape leaves [10033-257]
A new image segmentation method based on partial adaptive thresholds
Local kernel mapping based piecewise constant model for medical image segmentation
Image segmentation using Voronoi diagram

SESSION 5 IMAGE DENOISING AND FUSION

Global denoising for 3D MRI
An effective algorithm for noise variance estimation in shearlet domain
Improved nonlocal means method based on adaptive pre-classification for image denoising
Improved de-noising method based on spare representation for remote sensing image
Two-dimensional noise reduction in optical coherence tomography based on the shearlet transform
An image-noise estimation approach using singular value decomposition
An efficient adaptive total variation regularization for image denoising for mobile communication in 5G
Multi-angle SAR non-coherent image fusion algorithm based on HIS statistic characteristics
NSCT domain and regional texture smoothness of Infrared and visible light image fusion
Image fusion based on group sparse representation
Effects of image fusion on the information capacity of ZY-3 imagery
Color image fusion based on simplified pulse coupled neural network and HSV color space
Image fusion quality evaluation based on quantized DCT coefficients

SESSION 6 IMAGE ENHANCEMENT AND RESTORATION

Fractional differential algorithm for texture and contrast enhancement
PSF estimation for blind motion deblurring with image edge prior
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 25</td>
<td>A variational approach to restore targets of range-gated imaging in scattering environments [10033-130]</td>
</tr>
<tr>
<td>10033 26</td>
<td>A novel enhancement method for fog-degraded images based on DBLA [10033-152]</td>
</tr>
<tr>
<td>10033 27</td>
<td>1-D integral image for enhancing efficiency and effectiveness of probabilistic occupancy map-based people localization approach [10033-185]</td>
</tr>
<tr>
<td>10033 28</td>
<td>Single image blind motion deblurring [10033-141]</td>
</tr>
<tr>
<td>10033 29</td>
<td>Fast single image defogging method based on physical model [10033-30]</td>
</tr>
<tr>
<td>10033 2A</td>
<td>An improved unsharp masking sharpening algorithm for image enhancement [10033-35]</td>
</tr>
<tr>
<td>10033 2B</td>
<td>Semi-supervised classification of hyperspectral imagery based on stacked autoencoders [10033-188]</td>
</tr>
<tr>
<td>10033 2C</td>
<td>Hyperspectral imagery classification based on probabilistic classification vector machines [10033-189]</td>
</tr>
<tr>
<td>10033 2D</td>
<td>Very high resolution images classification by fine tuning deep convolutional neural networks [10033-91]</td>
</tr>
<tr>
<td>10033 2E</td>
<td>Fast image clustering based on convolutional neural network and binary K-means [10033-78]</td>
</tr>
<tr>
<td>10033 2F</td>
<td>SOFM-type artificial neural network for the non-parametric quality-based classification of potatoes [10033-42]</td>
</tr>
<tr>
<td>10033 2G</td>
<td>Determination of dry matter content in composted material based on digital images of compost taken under mixed visible and UV-A light [10033-54]</td>
</tr>
<tr>
<td>10033 2H</td>
<td>Maturity classification for sewage sludge composted with rapeseed straw using neural image analysis [10033-56]</td>
</tr>
<tr>
<td>10033 2I</td>
<td>Image analysis techniques in the study of slug behaviour [10033-99]</td>
</tr>
<tr>
<td>10033 2J</td>
<td>IT system for the identification and classification of soil valuation classes [10033-69]</td>
</tr>
<tr>
<td>10033 2K</td>
<td>SURF and KPCA based image perceptual hashing algorithm [10033-85]</td>
</tr>
<tr>
<td>10033 2L</td>
<td>Software supporting definition and extraction of the quality parameters of potatoes by using image analysis [10033-67]</td>
</tr>
<tr>
<td>10033 2M</td>
<td>Use of computer image analysis methods to evaluate the quality topping sugar beets with using artificial neural networks [10033-148]</td>
</tr>
<tr>
<td>10033 2N</td>
<td>An IT system for the simultaneous management of vector and raster images [10033-68]</td>
</tr>
</tbody>
</table>
Characterizing the time-frequency image by morphological pattern spectrum for evaluating electromagnetic environment complexity [10033-90]

A new plantar surface reference system for pressure study [10033-96]

SESSION 8 IMAGE INFORMATION MANAGEMENT

A novel lossless information hiding scheme based on histogram shifting of residual image [10033-101]

Secure chaos-based substitution with diffusion for highly auto-correlated data in image encryption [10033-206]

A fast 1D chaotic map-based image encryption using generalized Fibonacci-Lucas transform and bidirectional diffusion [10033-238]

A novel biometric image encryption algorithm based on compressed sensing and dual-tree complex wavelet transform [10033-165]

A SIFT-based robust watermarking scheme in DWT-SVD domain using majority voting mechanism [10033-4]

A dual color image watermarking algorithm based on chaotic scrambling and wavelet transform [10033-106]

Research of image compression algorithm based on wavelet transformation [10033-71]

Credit card account numbers detection and extraction from camera-based images [10033-204]

A new robust multiple description coding method for image based on block compressed sensing [10033-216]

Reversible watermarking for 2D CAD engineering graphics using asymmetric histogram shifting and complementary embedding [10033-135]

A new gray-scale watermark method based on irregular LDPC codes with Unequal Error Protection (UEP) [10033-38]

Informative and compressed features for aircraft detection in object recognition system [10033-18]

A novel image encryption method based on fractional Fourier transform and odd-even quantification [10033-192]

Research of digital image watermarking algorithm based on DCT [10033-170]

A novel image secret sharing scheme based on pixel field [10033-190]

A computer method to analyse the impact of ultrasound frequency on the brightness of USG images of muscle cross-sections [10033-259]
Part Two

SESSION 9 IMAGING AND RECONSTRUCTION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 36</td>
<td>Feasibility analysis on the chirp scaling based wideband and wide swath synthetic aperture imaging algorithm</td>
<td>[10033-137]</td>
</tr>
<tr>
<td>10033 37</td>
<td>An evaluation criterion based on image complexity for ghost imaging</td>
<td>[10033-116]</td>
</tr>
<tr>
<td>10033 38</td>
<td>Constructing cylindrical image by pixels accumulation to virtual reality</td>
<td>[10033-168]</td>
</tr>
<tr>
<td>10033 39</td>
<td>Imaging method for spinning targets based on Bayesian compressive sensing</td>
<td>[10033-102]</td>
</tr>
<tr>
<td>10033 3A</td>
<td>A feature point extraction method based on the continuity of laser stripe pixels</td>
<td>[10033-248]</td>
</tr>
<tr>
<td>10033 3B</td>
<td>Research on the 3D reconstruction method of the free-form surface based on the grid projection</td>
<td>[10033-254]</td>
</tr>
<tr>
<td>10033 3C</td>
<td>A fast algorithm based on image gradient field reconstructing</td>
<td>[10033-21]</td>
</tr>
<tr>
<td>10033 3D</td>
<td>Image reconstruction algorithm based on compressed sensing for electrical capacitance tomography</td>
<td>[10033-89]</td>
</tr>
<tr>
<td>10033 3E</td>
<td>A robust algorithm for compression and reconstruction of infrared thermal image sequence</td>
<td>[10033-92]</td>
</tr>
<tr>
<td>10033 3F</td>
<td>Research on impact of imaging under water by types of Chinese shallow sea</td>
<td>[10033-258]</td>
</tr>
<tr>
<td>10033 3G</td>
<td>A geometric calibration method for cone beam CT system</td>
<td>[10033-103]</td>
</tr>
</tbody>
</table>

SESSION 10 REMOTE SENSING AND RADAR IMAGING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 3H</td>
<td>The effect of lossy compression on feature extraction applied to satellite Landsat ETM+ images</td>
<td>[10033-202]</td>
</tr>
<tr>
<td>10033 3I</td>
<td>Radiometric calibration of space remote sensing camera</td>
<td>[10033-219]</td>
</tr>
<tr>
<td>10033 3J</td>
<td>A 1-bit compressive sensing approach for SAR imaging based on approximated observation</td>
<td>[10033-184]</td>
</tr>
<tr>
<td>10033 3K</td>
<td>Experimental results of radar imaging based on orbital angular momentum modulation</td>
<td>[10033-195]</td>
</tr>
<tr>
<td>10033 3L</td>
<td>Electromagnetic vortex carrying orbital angular momentum in radar imaging</td>
<td>[10033-198]</td>
</tr>
<tr>
<td>10033 3M</td>
<td>Research on geometry rectification and accuracy evaluation for the ZY-3 remote sensing imagery based on the sparse control points</td>
<td>[10033-263]</td>
</tr>
</tbody>
</table>
10033 3N Synthetic aperture lidar imaging through atmospheric turbulence [10033-199]
10033 3O Vegetation pixels extraction based on red-band enhanced normalized difference vegetation index [10033-87]
10033 3P Positioning of airborne stereo SAR images with POS data and one GCP [10033-193]
10033 3Q Using hyperspectral image data to estimate soil mercury with stepwise multiple regression [10033-120]
10033 3R Automatic registration of Unmanned Aerial Vehicle remote sensing images based on an improved SIFT algorithm [10033-212]
10033 3S A quality evaluation method of SAR image based on grayscale image and electromagnetic scattering characteristics [10033-119]
10033 3T Assessment of anticipated runoff because of impervious surface increase in Pune Urban Catchments, India: a remote sensing approach [10033-245]

SESSION 11 IMAGE DETECTION AND APPLICATION

10033 3U Fabric defect detection based on wavelet transform and background estimation [10033-133]
10033 3V Inshore ship detection with high-resolution SAR data using salience map and kernel density [10033-244]
10033 3W A study of the potential of using worldview-2 of images for the detection of red attack pine tree [10033-172]
10033 3X UAV reconnaissance images targeting method [10033-163]
10033 3Y A defect detection method based on sub-image statistical feature for texture surface [10033-157]
10033 3Z A new A-star algorithm adapted to the semi-automatic detection of cracks within grey level pavement images [10033-52]
10033 40 Eye feature points detection by CNN with strict geometric constraint [10033-225]
10033 41 A new feature selection method for the detection of architectural distortion in mammographic images [10033-114]
10033 42 Rear-view vehicle detection based on MSER and spatial combination feature description [10033-232]
10033 43 Model recommendation for pedestrian detection [10033-215]
10033 44 Spatiotemporal saliency detection using border connectivity [10033-143]
<table>
<thead>
<tr>
<th>Session 12: Super-Resolution Image and Computational Photography</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 45</td>
</tr>
<tr>
<td>10033 46</td>
</tr>
</tbody>
</table>

10033 47	Implementation of Ill-Sampled Image Geometry Super-Resolution Processing Technology [10033-20]
10033 48	An Edge-Preserving Iterative Back-Projection Method for Image Super-Resolution [10033-255]
10033 49	Super-Resolution Reconstruction Algorithm Based on Local Self-Similarity [10033-124]
10033 4A	Image Super-Resolution Via Multistage Sparse Coding [10033-131]
10033 4B	Super-Resolution Reconstruction Based on Adaptive Regularization Using Constrained Particle Swarm Optimization [10033-62]
10033 4C	Single Image Super-Resolution of 3D MRI Using Local Regression and Intermodality Priors [10033-5]
10033 4D	Three-Dimensional Point Cloud Registration Based on ICP Algorithm Employing K-D Tree Optimization [10033-261]
10033 4E	Stepless Digital Zoom for High Definition Camera [10033-221]
10033 4F	Image Super-Resolution Based on Self-Similarity and Various Patch Size [10033-16]
10033 4G	The Optimization and Implementation of the Auto-Exposure Algorithm Based on Image Entropy [10033-250]

<table>
<thead>
<tr>
<th>Session 13: Medical Image Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 4H</td>
</tr>
<tr>
<td>10033 4I</td>
</tr>
<tr>
<td>10033 4J</td>
</tr>
<tr>
<td>10033 4K</td>
</tr>
<tr>
<td>10033 4L</td>
</tr>
<tr>
<td>10033 4M</td>
</tr>
</tbody>
</table>
SESSION 14 IMAGE PROCESSING TECHNOLOGIES

10033 4N Segmentation and classification of offline hand drawn images for the BGT neuropsychological screening test [10033-72]
10033 4O A fast iris localization algorithm under visible light condition [10033-180]
10033 4P Support vector machine and morphological processing algorithm for red blood cell identification [10033-9]

SESSION 15 FILTER DESIGN AND SIGNAL PROCESSING

10033 51 Improved adaptive convex combination of LMS algorithm based on conjugate gradient method [10033-125]
10033 52 A filter design method for beam hardening correction in middle-energy x-ray computed tomography [10033-220]
10033 53 A new adaptive weighted mean filter for removing high density impulse noise [10033-28]
10033 54 A novel method for block ambiguities of independent component analysis using previous demixing matrices [10033-242]
10033 55 Artifact removal for physiological signals via wavelets [10033-153]
10033 56 The optimization of discrete wavelet transform module in DSP environment [10033-36]
10033 57 A similarity method for sorting radar signal [10033-164]
10033 58 A new approach for high order MQAM signal modulation recognition [10033-223]
10033 59 Efficient method of DOA estimation for coherent signal based on sparse signal reconstruction [10033-173]
10033 5A A new detection method for faster-than-Nyquist signaling based on sphere algorithm [10033-25]
10033 5B Radar sorting performances from a partition clustering perspective [10033-162]
10033 5C Improvement of pose imitation method: a signal processing perspective [10033-177]
10033 5D Knowledge-aided subspace detector for second-order Gaussian signal in nonhomogeneous environments [10033-222]

SESSION 16 VIDEO SIGNAL PROCESSING

10033 5E A no-reference video quality evaluation method based on HEVC bitstream [10033-26]
10033 5F A novel video stabilization method based on FREAK [10033-15]
10033 5G Video co-saliency detection [10033-208]
10033 5H A wavelet HD-video de-noising system with frame rate conversion [10033-209]
10033 5I Measurement method for video probe based on line-structured light [10033-174]
10033 5J Extrapolation based pixel domain distributed video coding [10033-123]
10033 5K Event recognition of crowd video using corner optical flow and convolutional neural network [10033-241]
10033 5L Efficient background model based on multi-level feedback for video surveillance [10033-97]

SESSION 17 COMPUTER VISION AND VISUALIZATION

10033 5M Generating dynamic street view images [10033-3]
10033 5N A real time vision system for traffic surveillance at intersections [10033-160]
10033 5O Graph regularized deep semi-nonnegative matrix factorization for clustering [10033-73]
10033 5P Using triplet loss to generate better descriptors for 3D object retrieval [10033-19]
<table>
<thead>
<tr>
<th>Session 18</th>
<th>Computer and Communication Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>10033 5Q</td>
<td>A robust visual tracking method with restricted Boltzmann machines based classifier [10033-74]</td>
</tr>
<tr>
<td>10033 5R</td>
<td>Image processing in dimensional measurement for hot large forgings based on laser-aided binocular machine vision system [10033-76]</td>
</tr>
<tr>
<td>10033 5S</td>
<td>High-speed railway clearance surveillance system based on convolutional neural networks [10033-213]</td>
</tr>
<tr>
<td>10033 5T</td>
<td>Bag of visual word model based on binary hashing and space pyramid [10033-211]</td>
</tr>
<tr>
<td>10033 5U</td>
<td>Feature pooling for small visual dictionaries [10033-60]</td>
</tr>
<tr>
<td>10033 5V</td>
<td>Indoor robot 3D scene reconstruction optimization using planar features [10033-183]</td>
</tr>
<tr>
<td>10033 5W</td>
<td>Selective background prior for saliency detection [10033-210]</td>
</tr>
<tr>
<td>10033 5X</td>
<td>A new method of virtual Han Chang’an City navigation system [10033-251]</td>
</tr>
<tr>
<td>10033 5Y</td>
<td>A Kalman-filter-based wireless clock synchronization method in indoor localization [10033-53]</td>
</tr>
<tr>
<td>10033 5Z</td>
<td>Transfer sparse machine: matching joint distribution by subspace learning and classifier transduction [10033-121]</td>
</tr>
<tr>
<td>10033 60</td>
<td>A dropout distribution model on deep networks [10033-47]</td>
</tr>
<tr>
<td>10033 61</td>
<td>Ambiguity resolving in parameter estimation of a single near-field source with uniform circular array via clustering [10033-128]</td>
</tr>
<tr>
<td>10033 62</td>
<td>Clustering by exponential density analysis and find of cluster centers based on genetic algorithm [10033-144]</td>
</tr>
<tr>
<td>10033 63</td>
<td>Symbol-by-symbol detection for turbo-coded FTN aided with precoding [10033-61]</td>
</tr>
<tr>
<td>10033 64</td>
<td>A mesh simplification algorithm based on vertex importance and hierarchical clustering tree [10033-161]</td>
</tr>
<tr>
<td>10033 65</td>
<td>An ant colony algorithm based on differential evolution [10033-132]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the six-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first four digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abayomi, Oluremi, 55
Abd El-Samie, Fathi E., 3H
Aktar, Nargis, 4L
Al Suman, Abdulla, 4L
Amhaz, Rabih, 3Z
Askuzzaman, Md., 4L
Bai, Gaiyan, 0U
Bai, Hang, 1L
Bai, Ting, 0O
Bai, Yang, 49
Bai, Zechao, 3P
Baltazart, Vincent, 3Z
Bin, Tang, 57, 58
Boniecki, P., 15, 1M, 2F, 2G, 2J, 2L, 2M, 2N, 35
Bykowski, M., 35
Cai, Bao, 5A
Cai, Wenjing, 5W
Cai, Yufang, 3G
Cai, Zhishan, 32
Cao, Ai-hua, 48
Cao, Bei, 0C
Cao, Chuqing, 4J
Cao, Weifeng, 0l
Cao, Yue, 5J
Chang, Li, 4P
Chang, Shengjiang, 40
Chao, Yin, 62, 64
Chen, Chu, 1F
Chen, Chun Y., 05
Chen, Hao, 3A
Chen, Huai-liang, 3O
Chen, Hua-tsung, 27
Chen, Jun, 0Q
Chen, Kuo, 06
Chen, Liang, 34
Chen, Musheng, 32
Chen, Qingsi, 23
Chen, Shuang-shuang, 2O
Chen, Si-jia, 5D
Chen, Syu, 4i, 52, 52
Chen, Tieying, 4Y
Chen, Wu-hsiung, 38
Chen, Xin, 61
Chen, Yajun, 45
Chen, Ying, 3B
Chen, Youbin, 2X
Cheng, Chih-Shan, 5M
Cheng, Chuang, 1D
Cheng, Guangyu, 36

Cheng, Hong, 3X
Cheng, Suyuan, 4R
Cheng, Ying-pei, 02
Cheng, Yongqiang, 3K, 3L
Chong, Albert K., 2P
Chuang, Jen-Hui, 27
Cloppet, Florence, 4N
Cui, Wenchao, 10
D., Lisak, 35
Dach, J., 2F, 2H
Dahal, Keshab, 55
Dan, Dai, 1P
Davis, Patrick, 55
Deng, Haowen, 5P
Deng, Shuo, 19
Deng, Sibin, 5F
Deng, Wenkang, 0N
Deshpande, Shailesh, 3T
Ding, Chang, 3C
Ding, Tingting, 21
Dong, Chaojun, 1K
Dong, Jiwen, 2T
Dong, Jun, 2O
Dong, Lili, 3C
Dong, Nan, 3F
Dong, Yan, 3U
Dong, Yun-yun, 0M
Dou, Hao, 08, 0B
Dou, Lijun, 4K
Du, Chao, 29
Du, Haiqing, 4X
Du, Wei, 4U
Du, Yanxia, 1E
Duan, Baosong, 4E
Duan, Bingbing, 28
Duan, Hao, 54
Fan, Chaonan, 5R
Fan, Hongzhi, 1L
Fan, Shengming, 16
Fan, Xiaopeng, 3H
Fan, Yi, 2U, 2Y
Fang, Cheng-jun, 3B
Fang, Hao, 4W
Fang, Li, 5T
Fang, Qian-xue, 0Q
Fang, Yao, 4E
Fei, Shumin, 0I
Feng, Ao, 1Q
Feng, Jiwei, 1L
Ma, Xiaoyu, 5E
Ma, Yide, 2S
Ma, Yingcun, 07
Ma, Yong-Chao, 3E
Man, Hong, 1K
Mao, Aihua, 5C
Mao, Tiezheng, 5C
Mao, Xiaojui, 1N
Martinez, Femando, 50
Martinez, Fredy, 50
Masroor, Uzma, 4N
Mdziniso, Nonhle Channon, 55
Men, Tao, 23
Meng, Chunning, 40
Meng, Jidong, 39
Meng, Xianglai, 4D
Ming, Delie, 08, 0B
Mioduszewska, Natalia, 2F, 2G, 2M
Mo, Delin, 1T
Moetesum, Momina, 4N
Montiel, Holman, 50
Mu, Chengpo, 07
Mueller, 2H, 2I, 2L, 2M, 2N
Naqvi, Abid A., 2R
Nie, Rencan, 21, 4K
Nie, Shengyu, 54
Nie, WeiGuo, 2R
Niebała, G., 2H, 2I, 2J, 2L, 2M, 2N
Ning, Jingyi, 4G
Okoń, P., 15, 1M, 2F, 2I
Pan, Yuzhuo, 32
Pau, Giovanni, 03
Pei, Zhongcai, 53
Peng, Fei, 2Z
Peng, Jie, 1Q
Peng, Jinya, 5X
Peng, Tianqi, 5T
Peng, Xianlin, 5X
Peng, Yu-Chen, 1A
Penman, Diana M., 4L
Phankokkruad, Manop, 0V
Pickering, Mark R., 4L
Pongmanawan, Pasinee, 0V
Przybyl, J., 15, 1M, 2F, 2J, 35
Przybyl, K., 2F, 2G, 2H, 2I, 2J, 2L, 2M, 2N
Przybylak, A., 35
Qi, Yinlong, 2K
Qi, Zhiyi, 40
Qian, Xu, 13
Qiao, Linqing, 1N
Qin, Hongyin, 23
Qin, Yuliang, 3K, 3L
Qu, Guoqing, 64
Qu, Lang-Bo, 02
Qu, Yuehong, 2K
Qu, Shengwei, 50
Qu, Zhiyi, 40
Ran, Da, 1X
Ren, Xiaoli, 59
Rui, Zhang, 62
Rumyantsev, Konstantin, 0A
Ryniecki, A., 2L
Shang, Ke, 08
Shang, She, 39
Shao, Chunfu, 5N
Sharif, M., 2R
Shi, Chengying, 1B
Shi, Dazhao, 0G, 0G
Shi, Min, 49, 4A
Shi, Yang, 4W
Shi, Yi, 1F
Siddiqi, Imran, 4N
Ślósarz, P., 1M, 35
Song, Bo-Wen, 3O
Song, Hongsheng, 3Q
Song, Wei, 29
Song, Xiaodong, 3I
Song, Zongxi, 0J, 0N, 1Z
Srinivasan, Kathiravan, 5M
Słoniński, P., 1M
Su, Feng, 0F
Su, Fulin, 0D
Suman, Abdulla Al, 4L
Sun, Jie, 3F
Sun, Junhong, 04, 4B
Sun, Kelin, 31
Sun, Shufa, 1O
Sun, Tao, 3R
Sun, Weiyang, 22
Sun, Wenbang, 3X
Sun, Xiao, 08, 0O
Sun, Yu-mei, 0F, 0M
Sun, Z-Qiang, 2U
Tag El-Bir Awad Elsoufi, Mohammed, 58
Tan, Jing, 48
Tan, Qingping, 56
Tan, Zhiling, 05
Tang, Bin, 58
Tang, Hao, 01
Tang, Qian, 0C
Tang, Song, 5L
Tang, Xia-an, 4T
Tang, Zhiyong, 53
Tao, Shengjie, 3E
Tao, Zhi-Qiang, 4B
Teng, Peng-guo, 34
Tian, Jinwen, 08, 0O
Tian, Pei, 3D
Tian, Zhen, 36
Tianqiang, Peng, 5T
Tompczak, R. J., 2H
Tong, Hejun, 1C
Tse, Rita, 03
Vincent, Nicole, 4N
Wan, Shouhong, 4V
Wan, Yi, 2A, 30
Wang, Bingshu, 5L
Wang, Chunmei, 33
<table>
<thead>
<tr>
<th>Name</th>
<th>Number</th>
<th>Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wang, Fan</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Wang, Feng</td>
<td>04, 4B</td>
<td></td>
</tr>
<tr>
<td>Wang, Hanshi</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Wang, Hongqiang</td>
<td>3K</td>
<td></td>
</tr>
<tr>
<td>Wang, Ji</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Wang, Jia</td>
<td>1G, 1U</td>
<td></td>
</tr>
<tr>
<td>Wang, Jiateng</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Wang, Jingyu</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Wang, Jue</td>
<td>3G</td>
<td></td>
</tr>
<tr>
<td>Wang, Kai</td>
<td>3A</td>
<td></td>
</tr>
<tr>
<td>Wang, Ke</td>
<td>5A</td>
<td></td>
</tr>
<tr>
<td>Wang, Keqiang</td>
<td>1K</td>
<td></td>
</tr>
<tr>
<td>Wang, Li</td>
<td>4T</td>
<td></td>
</tr>
<tr>
<td>Wang, Lichen</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>Wang, Lingli</td>
<td>5R</td>
<td></td>
</tr>
<tr>
<td>Wang, Linna</td>
<td>0W</td>
<td></td>
</tr>
<tr>
<td>Wang, Linyu, 4I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Luping</td>
<td>5W</td>
<td></td>
</tr>
<tr>
<td>Wang, Mei-chun</td>
<td>0F</td>
<td></td>
</tr>
<tr>
<td>Wang, Meiling</td>
<td>4R</td>
<td></td>
</tr>
<tr>
<td>Wang, Mingrong</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Wang, Na</td>
<td>3A</td>
<td></td>
</tr>
<tr>
<td>Wang, Peng</td>
<td>0X, 2Q</td>
<td></td>
</tr>
<tr>
<td>Wang, Ping</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Wang, Quan</td>
<td>4K</td>
<td></td>
</tr>
<tr>
<td>Wang, Rui</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Wang, Runyuan</td>
<td>06</td>
<td></td>
</tr>
<tr>
<td>Wang, Shan, 4O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Shengjin</td>
<td>1B, 5Z</td>
<td></td>
</tr>
<tr>
<td>Wang, Shunan</td>
<td>3K</td>
<td></td>
</tr>
<tr>
<td>Wang, Suyu, 5K</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Tianrui</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>Wang, Ting</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Wang, Wei</td>
<td>3I</td>
<td></td>
</tr>
<tr>
<td>Wang, Weijiang</td>
<td>1F</td>
<td></td>
</tr>
<tr>
<td>Wang, Xiao meng, 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Xiaoying</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Wang, Xihan, 5X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Y., 2D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Yang, 55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Yulin, 46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang, Zhengzhou, 0R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Webb, Alexandra Louise, 4L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wei, Sun</td>
<td>2W</td>
<td></td>
</tr>
<tr>
<td>Wei, Xiangpo</td>
<td>2B, 2C</td>
<td></td>
</tr>
<tr>
<td>Wei, Xizhang</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Wen, Mei</td>
<td>5P</td>
<td></td>
</tr>
<tr>
<td>Wen, Peizhi</td>
<td>3Y</td>
<td></td>
</tr>
<tr>
<td>Wojciezak, D., 2G, 2I, 2M, 35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Hongzh, 3W</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Huan, 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Jie, 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Jinghua, 05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Kai, 0Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Qinzheng</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>Wu, Scong</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Wu, Tao, 1J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Tongbao, 44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Weibin, 09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Weina, 2V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Xi, 1Q, 24, 4C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Xiaojun, 3Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Zhiqing, 2E</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Zhilong, 5O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wu, Zhize, 4V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xi, Xiaoqi, 52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xia, Hui, 3A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xia, Qin, 1T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiang, Qian, 3G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiao, Meifeng, 4R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, Hongtao, 45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, Kai, 4F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, Yi, 46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, Yufeng, 5G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xie, Yunfang, 4S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xin, J., 21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xing, Shuai, 1T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xing, Xiaoduo, 63</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiong, Huijiang, 3Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xiong, Xue-mei, 3B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Guanzhu, 26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Hua, 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Jianjun, 56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Jingtao, 4X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Pengtao, 5R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Qing, 3P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Wei, 1A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Wenhai, 3C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Xianling, 5H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Ye, 5U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Yufeng, 1R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Zhaohui, 0C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xu, Zhen-yu, 0M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xua, Hua, 51</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xue, Zhixiang, 2B, 2C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xun, Yanqin, 65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yadav, Piyush, 3T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yan, Bin, 4I, 52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Helin, 60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Hongtao, 3I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Huang, 0M, 0S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Jian, 1V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Jian-wen, 0Q</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Janyu, 42</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Jingfeng, 0U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Jinghao, 5R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Jilin, 4D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Juan, 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Junfeng, 1S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Junjie, 1J</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Lifang, 5U</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Liya, 5N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Longchao, 3Z</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Luping, 4X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Shuai, 0H, 3X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Xiaopeng, 1R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Xin, 4A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang, Yunyun, 2X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

xix
周, 志勇, 54
 Zhu, 恒亮, 0 Y
 Zhu, 晋文, 4 D
 Zhu, 琪良, 5 S
 Zhu, 毓德, 3 Q
 Zhu, 丁, 4 I, 4 M
 Zhu, 韦强, 1 X
 Zhu, 永风, 0 P
 Zhu, 颖生, 2 U, 2 Y, 5 Q
 Zong, 秀信, 5 J
 Zou, 雪梅, 5 G
 Zou, 义宾, 26
Conference Committee

Honorary Chairs

Zhang Jingzhong, Chinese Academy of Sciences (China)
Chin-Chen Chang, Feng Chia University (Taiwan)

International Advisory Committee

Yuri Rzhanov, University of New Hampshire (United States)
Lin Zhouchen, Peking University (China)

Conference Chairs

Charles M. Falco, College of Optical Sciences, The University of Arizona (United States)
Wang Xiaoyu, Sichuan Province Computer Society (China)
Zhou Jiliu, Chengdu University of Information Technology (China)

Program Committee Chairs

Xudong Jiang, Nanyang Technological University (Singapore)
Zhang Yi, Sichuan University (China)
Qin Zhiguang, University of Electronic Science and Technology (China)
Pan Wei, Southwest Jiaotong University (China)

Steering Committee Chairs

Jamshid Dehmeshki, Kingston University (United Kingdom)
Wang Xiaojing, Chengdu Institute of Computer Applications (China)
Chen Xingshu, Sichuan University (China)

Organizing Committee Chair

Changyuan Song, Sichuan Province Computer Federation (China)

Publicity Chairs

Zhu Guobin, University of Electronic Science and Technology (China)
Xiang Qian, Sichuan Province Computer Federation (China)
Technical Committee Chairs

Zhang Yong, Chengdu Institute of Computer Applications (China)
Liu Zhang, Chengdu Institute of Computer Applications (China)
Ismail Rakip Karas, Karabük University (Turkey)

Technical Committee

Krzysztof Koszela, Poznan University of Life Sciences (Poland)
Liming Zhang, University of Macau (Macau)
Jinfeng Yang, Civil Aviation University of China (China)
Yong-Sheng Chen, National Chiao Tung University (Taiwan)
Tarek Sobh, University of Bridgeport (United States)
Mueller Wojciech, Poznan University of Life Sciences (Poland)
Srikanta Murthy K., PES School of Engineering (India)
Arinto Yudi Ponco Wardoyo, Brawijaya University (Indonesia)
Radosław Jan Kozłowski, Poznan University of Life Sciences (Poland)
Gniewko Niedbala, Poznan University of Life Sciences (Poland)
Bicheng Li, Information Engineering University (China)
Lixiong Liu, Beijing Institute of Technology (China)
Fulin Su, Harbin Institute of Technology (China)
Zhi Liu, Shanghai University (China)
Bin Tang, University of Electronic Science and Technology of China (China)
Lei Xiaoyong, Beihang University (China)
En-Bing Lin, Central Michigan University (United States)
Huimin Ma, Tsinghua University (China)
Juncheng Li, Hunan University of Humanities (China)
Mingzhe Liu, Chengdu University of Technology (China)
Muhammad Naufal Bin Mansor, Universiti Malaysia Perlis (Malaysia)
George A. Papakostas, Eastern Macedonia and Thrace Institute of Technology (Greece)
Zhang Zhi Jia, Shenyang University of Technology (China)
Peng Tianqiang, Henan Institute of Engineering (China)
Tieling Chen, University of South Carolina Aiken (United States)
Hong Lu, Nanjing Institute of Technology (China)
Florence Cloppet, Paris Descartes Université (France)
Momina Moetesum, Bahria University (Pakistan)
Imran Siddiqi, Bahria University (Pakistan)
Bin Yan, National Digital Switching System Engineering and Technological Research Center (China)
Wu Xi, Xihua University (China)
Wu-Hsiung Chen, Pano Leader Company, Ltd. (Taiwan)
Hengian Li, Shandong Computer Science Center (China)
Sergey Kravtsov, Southern Federal University (Russian Federation)
Konstantin Rumyantsev, Southern Federal University (Russian Federation)
Yan Yang, Southwest Jiaotong University (China)
Sherif Welsen, University of Nottingham Ningbo (China)
Ningyu Zhang, Shandong Jianzhu University (China)
Shouhong Wan, USTC (China)
Chunning Meng, China Maritime Police Academy (China)
Jenq-Neng Hwang, University of Washington (United States)
Hua-Tsung Chen, National Chiao Tung University (China)
Ahmed A. Abd El-Latif, Menoufia University (Egypt)
Mark Richard Pickering, University of New South Wales (Australia)
Hongping Li, Ocean University of China (China)
Huiqin Jiang, Zhengzhou University (China)
Tao Wu, Lingnan Normal University (China)
Kathiravan Srinivasan, National Ilan University (Taiwan)
Liu Zhen, National University of Defense Technology (China)
Yigang Zhou, Harbin Institute of Technology (China)
Jia Xiben, Beijing University of Technology (China)
Fengqi Li, Dalian University of Technology (China)
Wenbing Tao, Huazhong University of Science and Technology (China)
Nicole Vincent, Paris Descartes Université (France)
Ahmed Nashat, Fayoum University (Egypt)
Zhihua Xie, Jiangxi Science and Technology Normal University (China)
Kuo-Liang Chung, National Taiwan University of Science and Technology (China)
G. Balakrishnan, Indra Ganesan College of Engineering (India)
Peng Wang, Tsinghua University (China)
Juan Li, Beijing Jiaotong University (China)
Jing Hu, Chengdu University of Information and Technology (China)
Hung Nguyen, Japan Advanced Institute of Science and Technology (Japan)
He Yangming, Jiangxi University of Traditional Chinese Medicine (China)
Bing Li, State Key Laboratory of Complex Electromagnetic Environmental Effects on Electronics and Information Systems (China)
Fei Xia, Shanghai University of Electric Power (China)
Lifeng Zhang, North China Electric Power University (China)
Dongming Zhou, Yunnan University (China)
Zou Junzhou, East China University of Science and Technology (China)
Wenchao Cui, China Three Gorges University (China)
Hong Zhang, Armstrong State University (United States)
Suyu Wang, Beijing University of Technology (China)
Maciej Zaborowicz, Ponzan University of Life Sciences (Poland)
Shuai Lu, Jilin University (China)
Dongmei Fu, University of Science and Technology Beijing (China)
He Yangming, Jiangxi University of Traditional Chinese Medicine (China)
Peiyuan Guo, Beijing Technology and Business University (China)
Albert Chong, University of Southern Queensland (Australia)
Yebin Liu, Tsinghua University (China)
Lizhuang Ma, Shanghai Jiao Tong University (China)
Hongtao Xie, Chinese Academy of Sciences (China)
Tao Lei, Chinese Academy of Sciences (China)
Wen He, Chengdu Medical College (China)
Chi-Man Pun, University of Macau (China)
Zhen Liu, Ningbo University (China)
Jin Guowang, Zhengzhou Institute of Surveying and Mapping (China)
Hu Zheng, National University of Defense Technology (China)
Xiangyang Hao, Information Engineering University (China)
Introduction

We had the great honor of organizing the Eighth International Conference on Digital Image Processing (ICDIP 2016). It was truly a great pleasure for us to greet more than 250 participants from many different countries. We firmly believe that ICDIP will become an important international event in the field of Digital Image Processing.

The Eighth International Conference on Digital Image Processing (ICDIP 2016) was co-sponsored by Sichuan Province Computer Federation, International Association of Computer Science and Information Technology, Chengdu University of Information Technology and Chinese Academy of Sciences Chengdu Institute of Computer Applications, and assisted by Sichuan University, University of Electronics Science and Technology of China, Southwest Jiaotong University, and Chengdu Young Education Consulting Co., Ltd.

The objective of this conference was to provide a platform for the participants to report and review innovative ideas and up-to-date progress and developments and discuss novel approaches to application in the digital image processing field. It is sincerely hoped that the research and development in digital image processing will be improved and the international cooperation sharing the common interest enhanced.

On behalf of other Co-Chairs, and the Organization Committee of ICDIP 2016, we would like to express our heartfelt thanks for our sponsors and cooperating organizers for all they have done for ICDIP 2016. Thanks also to all the authors for their contributions to the proceedings, to all of the participants and friends for their interest and efforts in helping us to make it possible, to the Program Technical Committee for their effective work and valuable advice, the Conference Secretary, and to the editors at SPIE for their tireless efforts and outstanding service in preparing and publishing the proceedings.

Xudong Jiang