You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
17 February 2017Clinical applications of high-speed blood flow measurements with diffuse correlation spectroscopy
Diffuse Correlation Spectroscopy (DCS) is an increasingly popular non-invasive optical technique to clinically measure deep tissue blood flow, albeit at slow measurement rates of 0.5-1 Hz. We recently reported the development of a new ‘fast’ DCS instrument that continuously measures blood flow at 50-100 Hz (simultaneously from 8 channels), using conventional DCS sources/detectors, and optimized software computations. A particularly interesting result was our ability to optically record pulsatile micro-vascular blood flow waveforms, and therein readily identify high frequency features such as the dicrotic notch. Here, we showcase the utility and potential of high-speed measurements of blood flow (and arterial blood pressure) in a few clinical applications. First, we employ the fast-DCS instrumentation to measure cerebral autoregulation (CVAR) dynamics. Cerebral autoregulation refers to the mechanism by which cerebral blood flow (CBF) is maintained during fluctuations in blood pressure; CVAR is impaired in the injured brain. We derive an index of autoregulation by measuring the rates of decrease (and recovery) of blood flow and blood pressure following a sudden, induced change in systemic blood pressure (e.g., bilateral thigh cuff deflation). Our pilot experiments in healthy volunteers show that DCS measured rates of micro-vascular regulation are comparable to conventional large vessel regulatory metrics (e.g., measured with transcranial Doppler ultrasound). Second, we utilized pulsatile blood flow oscillations in cerebral arteries to estimate the critical closing pressure (CrCP), i.e., the arterial blood pressure at which CBF approaches zero. Pilot experiments in healthy subjects show good agreement between CrCP measured with DCS and transcranial Doppler ultrasound.
The alert did not successfully save. Please try again later.
Ashwin B. Parthasarathy, Wesley B. Baker, Kimberly Gannon, Michael T. Mullen, John A. Detre, Arjun G. Yodh, "Clinical applications of high-speed blood flow measurements with diffuse correlation spectroscopy," Proc. SPIE 10059, Optical Tomography and Spectroscopy of Tissue XII, 1005905 (17 February 2017); https://doi.org/10.1117/12.2253488