Front Matter: Volume 10061

Event: SPIE BiOS, 2017, San Francisco, California, United States
Microfluidics, BioMEMS, and Medical Microsystems XV

Bonnie L. Gray
Holger Becker
Editors

28–30 January 2017
San Francisco, California, United States

Sponsored by
SPIE

Co-sponsored by
microfluidic ChipShop GmbH (Germany)
The Ohio Center for Microfluidic Innovation at the University of Cincinnati (United States)

Published by
SPIE

Volume 10061
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 1605-7422
ISSN: 2410-9045 (electronic)
ISBN: 9781510605633

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org

Copyright © 2017, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 1605-7422/17/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

vii Authors
ix Conference Committee

SESSION 1 MANUFACTURING I

10061 02 Hybrid carbon nanotube-polymer scaffolds for cardiac tissue regeneration (Invited Paper) [10061-1]
10061 04 Rapid structuring of proteins on filter paper using lithography [10061-3]
10061 05 Graphene doped ZnO films for photoelectrowetting on microchannels [10061-4]

SESSION 2 MICROFLUIDIC DEVICES I

10061 08 Investigation of the capillary flow through open surface microfluidic structures [10061-8]
10061 0A AC electrothermal technique in microchannels [10061-10]

SESSION 3 MANUFACTURING II

10061 0D Fast and cheap fabrication of molding tools for polymer replication [10061-14]

SESSION 4 APPLICATIONS I

10061 0E 3D printed disposable optics and lab-on-a-chip devices for chemical sensing with cell phones (Invited Paper) [10061-15]
10061 0F Implementation of a protocol for assembling DNA in a Teflon tube [10061-16]
10061 0H Towards rapid prototyped convective microfluidic DNA amplification platform [10061-18]

SESSION 5 OPTOFLUIDICS I

10061 0I System-level integration of active silicon photonic biosensors (Invited Paper) [10061-19]
10061 0J Light field 3D endoscope based on electro-wetting lens array [10061-20]
10061 0L An optofluidic approach for gold nanoprobe based-cancer theranostics [10061-22]
<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>OPTOFUIDICS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>10061 0M</td>
<td>A portable fluorescent sensing system using multiple LEDs (Invited Paper) [10061-23]</td>
</tr>
<tr>
<td>10061 0O</td>
<td>Chemiluminescence generation and detection in a capillary-driven microfluidic chip [10061-25]</td>
</tr>
<tr>
<td>10061 0P</td>
<td>Multipath trapping dynamics of nanoparticles towards an integrated waveguide with a high index contrast [10061-26]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>MICROFLUIDIC DEVICES II</th>
</tr>
</thead>
<tbody>
<tr>
<td>10061 0S</td>
<td>Piezoelectric micromachined ultrasonic transducers and micropumps: from design to optomicrofluidic applications [10061-29]</td>
</tr>
<tr>
<td>10061 0T</td>
<td>Optimized AC electrothermal micromixing design for biofluid systems [10061-30]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 8</th>
<th>APPLICATIONS II</th>
</tr>
</thead>
<tbody>
<tr>
<td>10061 0X</td>
<td>Microfluidic separation of particles from whole blood using shear induced diffusion [10061-34]</td>
</tr>
<tr>
<td>10061 0Y</td>
<td>Controllable gas in oil in water double emulsion formation in a non-planar microfluidic device [10061-35]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 9</th>
<th>APPLICATIONS III</th>
</tr>
</thead>
<tbody>
<tr>
<td>10061 0Z</td>
<td>Peptide library synthesis on spectrally encoded beads for multiplexed protein/peptide bioassays (Invited Paper) [10061-36]</td>
</tr>
<tr>
<td>10061 10</td>
<td>Microfluidic system for in-vitro hypoxia assays [10061-37]</td>
</tr>
<tr>
<td>10061 11</td>
<td>Lab-on-a-chip platform for high throughput drug discovery with DNA-encoded chemical libraries [10061-38]</td>
</tr>
<tr>
<td>10061 12</td>
<td>Thermally assisted acoustophoresis as a new stiffness-based separation method (Best Student Paper) [10061-39]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 10</th>
<th>MEDICAL DEVICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>10061 13</td>
<td>Integration of systems biology with organs-on-chips to humanize therapeutic development (Invited Paper) [10061-40]</td>
</tr>
<tr>
<td>10061 16</td>
<td>Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing [10061-43]</td>
</tr>
</tbody>
</table>
10061 19 Liquid-phase reduction synthesis of mono-dispersed gold nanoparticles on glass microfluidic device with flow rate control [10061-44]

10061 1A Numerical study of insulator-based dielectrophoresis method for circulating tumor cell separation [10061-47]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceeding of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aghaamoo, Mohammad, 1A
Aghilinejad, Arian, 1A
Ahadian, Samad, 02
Ajit, Smrithi, 0H
Al-Aribe, Khaled, 05
Al-Mayyazat, O., 0I
Barnett, Jonathan Z., 0M
Baxter, Brian, 0Z
Becker, Holger, 16
Brower, Kara, 0Z
Busek, M., 10, 11
Chen, Wen Li Kelly, 13
Chen, Xiaolin, 1A
Cheung, K., 0I
Choi, Jin-Woo, 0M
Chrostowski, L., 0I
Clark, Amanda M., 13
Comina, G., 0E
Cook, Peter R., 0F
Cui, M., 11
Dalton, Colin, 0A, 0T
Dattner, Y., 0I
Dave, Abhishek, 0H
Davenport-Huyer, Locke, 02
Delamarche, Emmanuel, 0O
Dolatmoradi, Ata, 12
Edington, Collin D., 13
El-Zahab, Bilal, 12
Fang, C., 0I
Fang, Yifeng, 0X
Feuerborn, Alexander, 0F
Filippini, D., 0E
Fiorini, Paolo, 08
Fordyce, Polly M., 0Z
Gärtner, Claudia, 16
Goel, Sanket, 0H
Griffith, Linda G., 13
Grünzner, S., 10, 11
Gutierrez-Wing, M. Teresa, 0M
Hansen-Hagge, Thomas, 16
Harink, Björn, 0Z
Helmer, Dorothea, 04
Huang, Bobo, 0X
Huang, Cong, 0Y
Jones, Benjamin, 08
Jung, Gyu Suk, 0J
Keller, Nico, 04
Khazaaleh, Shadi, 0S
Kimerling, Lionel C., 0P
Kirschner, Nadine, 0D
Klotzbach, U., 10, 11
Knopf, George K., 05
Koch, Katharina K., 0Y
Kotz, Frederik, 04
Kurtz, Andreas, 16
Lagae, Liesbet, 08
Laplatine, L., 0I
Lee, Jin Su, 0J
Li, Guifang, 0P
Liang, Xiao, 0X
Liang, Yitao, 0X
Luan, E., 0I
Madzik, Mateusz T., 0S
Michel, Jurgen, 0P
Mohan, K. N., 0H
Mrowka, Ralf, 16
Nargang, Tobias M., 04
Navi, Maryam, 0A, 0T
Nguyen, Huy Q., 0Z
Panwar, Nishtha, 0L
Papautsky, Ian, 0X
Praveen, Hemanth Mithun, 0H
Radisic, Milica, 02
Ramon, Charlotte, 0O
Rapp, Bastian E., 04, 0D
Ratner, D. M., 0I
Reddavide, F. V., 11
Rezaiazadeh, S., 0I
Richter, Christiane, 0D
Rusch, Kelly A., 0M
S., Puneeth, 0H
Saeed, Numan, 0S
Salar, Alinaghi, 0A, 0T
Schmieder, F., 10
Sesham, Bharat, 0H
Shin, Young-Ho, 0M
Smith, Nathaniel, 02
Song, Peiyi, 0L
Sonntag, F., 10, 11
Steege, T., 10
Steinfeld, C., 10, 11
Suska, A., 0E
Taha, Inas, 0S
Taher, Ahmed, 08
Tanabe, Yu, 19
Temiz, Yuksel, 0O
Thorn, Kurt S., 0Z

vii
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital (United States) and Harvard School of Medicine (United States)

Program Track Chairs

Tuan Vo Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs

Bonnie L. Gray, Simon Fraser University (Canada)
Holger Becker, microfluidic ChipShop GmbH (Germany)

Conference Program Committee

Brian W. Anthony, Massachusetts Institute of Technology (United States)
Yolanda Fintschenko, LabSmith, Inc. (United States)
Bruce K. Gale, The University of Utah (United States)
Albert K. Henning, Aquarian Microsystems (United States)
Yuehe Lin, Pacific Northwest National Laboratory (United States)
Ciara K. O’Sullivan, Universitat Rovira i Virgili (Spain)
Ian Papautsky, University of Cincinnati (United States)
Bastian E. Rapp, Karlsruher Institut für Technologie (Germany)
Thomas Stieglitz, Albert-Ludwigs-Universität Freiburg (Germany)
Sindy Kam-Yan Tang, Stanford University (United States)
Albert van den Berg, MESA+ Institute for Nanotechnology (Netherlands)
Wanjun Wang, Louisiana State University (United States)
Bernhard H. Weigl, PATH (United States)
Session Chairs

1 Manufacturing I
Bonnie L. Gray, Simon Fraser University (Canada)
Holger Becker, microfluidic ChipShop GmbH (Germany)

2 Microfluidic Devices I
Bonnie L. Gray, Simon Fraser University (Canada)

3 Manufacturing II
Samad Ahadian, University of Toronto (Canada)

4 Applications I
Jin Woo Choi, Louisiana State University (United States)

5 Optofluidics I
Daniel Filippini, Linköping University (Sweden)

6 Optofluidics II
Loic Laplatine, The University of British Columbia (Canada)

7 Microfluidic Devices II
Jian Zhou, Zhejiang University (China)

8 Applications II
Polly Fordyce, Stanford University (United States)

9 Applications III
Somin Eunice Lee, University of Michigan (United States)

10 Medical Devices
Bonnie L. Gray, Simon Fraser University (Canada)
Holger Becker, microfluidic ChipShop GmbH (Germany)