Energy-based Treatment of Tissue and Assessment IX

Thomas P. Ryan
Editor

29–30 January 2017
San Francisco, California, United States

Sponsored and Published by
SPIE

Volume 10066
Contents

vii Authors
ix Conference Committee
xi Introduction

SESSION 1 KEYNOTE SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Paper Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10066 02</td>
<td>A novel thermal accelerant (TA) for augmentation of microwave energy during image-guided tumor ablation (Keynote Paper)</td>
<td>[10066-2]</td>
<td></td>
</tr>
<tr>
<td>10066 03</td>
<td>A theranostic platform for localized magnetic fluid hyperthermia and magnetic particle imaging (Keynote Paper)</td>
<td>[10066-3]</td>
<td></td>
</tr>
<tr>
<td>10066 04</td>
<td>Toward investigating changes in cell mechanoelastic properties in response to nanosecond pulsed electric fields (Keynote Paper)</td>
<td>[10066-4]</td>
<td></td>
</tr>
<tr>
<td>10066 05</td>
<td>Hypo-fractionated radiation, magnetic nanoparticle hyperthermia and a viral immunotherapy treatment of spontaneous canine cancer</td>
<td>[10066-15]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 2 PLASMA MEDICINE AND REACTIVE SPECIES

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Paper Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10066 06</td>
<td>Overview of current applications in plasma medicine (Invited Paper)</td>
<td>[10066-5]</td>
<td></td>
</tr>
<tr>
<td>10066 07</td>
<td>Corrosion and wear in plasma electrosurgical devices (Invited Paper)</td>
<td>[10066-6]</td>
<td></td>
</tr>
<tr>
<td>10066 08</td>
<td>Antibacterial effect of ZnO nanoparticles into coaxial electrospun polycaprolactone fibers to prevent infections from skin injuries</td>
<td>[10066-7]</td>
<td></td>
</tr>
</tbody>
</table>

SESSION 3 LOW-LEVEL ENERGY TREATMENT

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Paper Type</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10066 09</td>
<td>Low Intensity Pulsed Ultrasound (LIPUS) for the treatment of intervertebral disc degeneration (Invited Paper)</td>
<td>[10066-8]</td>
<td></td>
</tr>
<tr>
<td>10066 0A</td>
<td>Preliminary assessment of a hysteroscopic fallopian tube heat and biomaterial technology for permanent female sterilization</td>
<td>[10066-9]</td>
<td></td>
</tr>
<tr>
<td>10066 0B</td>
<td>Blue LED induced thermal effects in wound healing: experimental evidence in an in vivo model of superficial abrasions</td>
<td>[10066-10]</td>
<td></td>
</tr>
<tr>
<td>10066 0C</td>
<td>A visible Chinese human-combined Monte Carlo simulation study on low-level light therapy of stroke</td>
<td>[10066-11]</td>
<td></td>
</tr>
</tbody>
</table>
SESSION 4 NANOPARTICLE MEDICINE

10066 0D	The effect of hypofractionated radiation and magnetic nanoparticle hyperthermia on tumor immunogenicity and overall treatment response (Keynote Paper) [10066-1]
10066 0E	Simple coil-powering techniques for generating 10KA/m alternating magnetic field at multiple frequencies using 0.5KW RF power for magnetic nanoparticle hyperthermia [10066-12]
10066 0F	Magneto-thermal-acoustic differential-frequency imaging of magnetic nanoparticle with magnetic spatial localization: a theoretical prediction [10066-13]
10066 0G	Effect of intra-tumoral magnetic nanoparticle hyperthermia and viral nanoparticle immunogenicity on primary and metastatic cancer [10066-14]
10066 0H	A ferritin-containing nanoconjugate as MRI image-guidance to target Necl-5, a tumor-surface antigen: a potential thermal accelerant for microwave ablation [10066-16]

SESSION 5 ENERGY-BASED THERMAL TREATMENT

10066 0I	Endoluminal ultrasound applicator configurations utilizing deployable arrays, reflectors, and lenses to augment and dynamically adjust treatment volume, gain, and depth [10066-17]
10066 0J	Assessment of penetrating thermal tissue damage/spread associated with PhotonBlade™, Valleylab™ Pencil, Valleylab™ EDGE™ Coated Pencil, PlasmaBlade® 3.0S and PlasmaBlade® 4.0 for intraoperative tissue dissection using the fresh extirpated porcine muscle model (Invited Paper) [10066-18]
10066 0K	Global microwave endometrial ablation for menorrhagia treatment [10066-19]
10066 0L	Considerations for ex vivo thermal tissue testing exemplified using the fresh porcine longissimus muscle model for endometrial ablation (Invited Paper) [10066-20]
10066 0M	Flexible microwave ablation applicator for the treatment of pulmonary malignancies [10066-21]
10066 0N	Using a conformal water bolus to adjust heating patterns of microwave waveguide applicators (Invited Paper) [10066-22]

SESSION 6 IMAGING FOR THERAPY

<p>| 10066 0O | Changes in optical properties during heating of ex vivo liver tissues [10066-23] |
| 10066 0P | Improved accuracy of ultrasound-guided therapies using electromagnetic tracking: in-vivo speed of sound measurements [10066-24] |</p>
<table>
<thead>
<tr>
<th>SESSION 7</th>
<th>ENERGY-BASED SURGICAL TOOLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10066 0S</td>
<td>Complications of vessel architecture and the the reason that cylindrical electrodes are generally not effective (Invited Paper) [10066-26]</td>
</tr>
<tr>
<td>10066 0T</td>
<td>Histological evaluation and optimization of surgical vessel sealing systems [10066-27]</td>
</tr>
<tr>
<td>10066 0U</td>
<td>A Kagome fiber-based, high energy delivery laser scalpel system for ultrafast laser microsurgery [10066-28]</td>
</tr>
<tr>
<td>10066 0V</td>
<td>Tissue dissection using a 1470-nm diode laser and laparoscopic prototype [10066-29]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 8</th>
<th>PULSED ELECTRIC FIELDS AND CELL/TISSUE EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10066 0W</td>
<td>The influence of medium conductivity on cells exposed to nsPEF [10066-30]</td>
</tr>
<tr>
<td>10066 0X</td>
<td>Nanosecond electric pulses modulate skeletal muscle calcium dynamics and contraction [10066-31]</td>
</tr>
<tr>
<td>10066 0Y</td>
<td>A new paradigm for use of ultrafast lasers in ophthalmology for enhancement of corneal mechanical properties and permanent correction of refractive errors [10066-32]</td>
</tr>
<tr>
<td>10066 0Z</td>
<td>A computerized tutor prototype for prostate cryotherapy: key building blocks and system evaluation (Invited Paper) [10066-33]</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Adams, Matthew S., 09, 0I, 0P
Alfieri, Domenico, 0B
Almaguer-Flores, A., 08
Armani, Andrea M., 0W
Bacci, Stefano, 0B
Baird, Grayson L., 02, 0H
Ballmann, Charles, 04
Barnes, Ronald A., Jr., 0W, 0X
Beckhoff, Valeria, 0N
Beier, Hope T., 0W
Bennett, Haydon E., 0J, 0L
Ben-Yakar, Adela, 0U
Borjeson, Tiffany M., 02
Bursey, Alicea A., 05, 0D, 0G
Chang, Chun-Hung, 0V
Cicchi, Riccardo, 0B
Coad, James E., 0J, 0L, 0T
Collins, Scott A., 02
Conolly, Steven, 03
Coughlin, Dezba, 09
Crary-Burney, Margaret, 0S
Cunha, J. Adam M., 0P
Davison, Paul O., 0J
De Siena, Gaetano, 0B
Dhavalikar, Rohan, 03
Diederich, Chris J., 09, 0I, 0P
Divakar, Prajan, 0A
Dugat, Danielle, 05
Dupuy, Damian E., 02, 0H
Fallahi, Hojjatollah, 0K
Fiering, Steven N., 05, 0D, 0G
Fomovsky, Mikhail, 0Y
Frank, Victoria E., 02, 0H
Frattura, Eric, 0K
Fried, Nathaniel M., 0V
Fugett, James H., 0J, 0L
Gabay, Ilan, 0U
Garcia-Macedo, J. A., 0B
Gasparelles, Jonathan, 07, 0T
Giustini, Andrew J., 0D
Gladstone, David J., 05, 0D, 0G
Gogineni, Venkateshwara R., 00
Goodwill, Patrick, 03
Hall, Jamie R., 0Y
Hammerland, John, 0V
Hensley, Daniel, 03
Hoopes, P. Jack, 05, 0A, 0D, 0G
Home, Devante, 09
Hurwitz, Mark D., 0N
Ibarra, C., 08
Ibeiy, Bennett L., 04, 0W, 0X
Jirjis, Michael B., 0X
Jones, Peter, 09
Joshi, Purva, 0Z
Keast, Tom, 0M
Keelan, Robert, 0Z
Kenyon, Brendan M., 0H
Kramer, Steve, 0M
Lathrop, Robert, 0T
Li, Ting, 0C
Liebenberg, Ellen, 09
Lim, Sierin, 0H
Lombardo, Kara A., 02
Lotz, Jeffrey, 09
Magni, Giada, 0B
Maxwell, Aaron W. P., 02
Mazur, Courtney M., 0G
McCormick, James T., 0Z
Meng, Zhaokai, 04
Mills, David R., 0H
Moen, Erick K., 0W
Moodie, Karen L., 05, 0A
Nagarajan, Vivek Krishna, 0O
Nau, William H., 0V
Osterberg, Bjorn, 0D, 0G
Ozilgen, B. Arda, 09
Palk, David C., 0Y
Pan, Boan, 0C
Park, William K., 02, 0H
Paroli, Gaia, 0B
Paul, Jarod B., 02, 0H
Pavone, Francesco S., 0B
Pawlowski, Michal, 0U
Pearce, John, 0S
Petrov, Georgi, 04
Petryk, Alicia A., 05
Petryk, James D., 05
Pfannensiefer, Austin, 0M
Piao, Daxing, 0E, 0F
Pini, Roberto, 0B
Prado-Prone, C., 0B
Prakash, Punit, 0K, 0M
Prammer, Michael P., 02, 0H
Rabin, Yoed, 0Z
Rajan, Ashish, 05, 0E
Rinaldi, Carlos, 03
Rodrigues, Dario B., 0N
Conference Committee

Symposium Chairs

James G. Fujimoto, Massachusetts Institute of Technology (United States)
R. Rox Anderson, Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard School of Medicine (United States)

Program Track Chair

Steven L. Jacques, Oregon Health & Science University (United States)

Conference Chair

Thomas P. Ryan, Smith & Nephew, Inc. (United States)

Conference Program Committee

James E. Coad, West Virginia University (United States)
Chris J. Diederich, University of California, San Francisco (United States)
P. Jack Hoopes, Geisel School of Medicine, Dartmouth College (United States)
John A. Pearce, The University of Texas at Austin (United States)
Paul R. Stauffer, Thomas Jefferson University (United States)
Sharon L. Thomsen, Pathology Consultant to Engineers and Physicists (United States)

Session Chairs

1 Keynote Session
 Thomas P. Ryan, Smith & Nephew, Inc. (United States)

2 Plasma Medicine and Reactive Species
 Robert Lathrop, Smith & Nephew, Inc. (United States)

3 Low-Level Energy Treatment
 Paul R. Stauffer, Thomas Jefferson University (United States)

4 Nanoparticle Medicine
 John A. Pearce, The University of Texas at Austin (United States)
5 Energy-Based Thermal Treatment
Yoed Rabin, Carnegie Mellon University (United States)

6 Imaging for Therapy
Chris J. Diederich, University of California, San Francisco (United States)

7 Energy-Based Surgical Tools
James E. Coad, West Virginia University (United States)

8 Pulsed Electric Fields and Cell/Tissue Effects
P. Jack Hoopes, Geisel School of Medicine, Dartmouth College (United States)
Introduction

Welcome to the proceedings for the Energy-Based Treatment of Tissue and Assessment IX. This is the 19th year the conference has been included at Photonics West. Our first session in 1998 was entitled: Surgical Applications of Energy.

This year featured a wide variety of papers covering energy-based devices and techniques in medicine. Thirty-four papers were presented, and the publications associated with those talks comprise another comprehensive SPIE proceedings this year. We had a number of cutting-edge papers covering a range of topics: nanoparticles and the effects on immunology and cancer; thermal accelerant and theranostic platforms (both are novel for this conference); nanosecond pulsed electric fields; plasma medicine; low level energy treatment with ultrasound or light; and surgical tools for sterilization, laser scalpels, and laparoscopic dissection. Thermal therapy included microwave, ultrasound, and innovative imaging for assessment. It also included surgical trainers that may have broad applications in training clinicians before using thermal treatments in many anatomical sites. Surgical vessel sealing assessment and architecture was also presented. Last, but not least, new laser technology for vision correction was presented, which could result in significant commercial development in the future. Throughout the years, we have tracked the evolution of treatment technologies, aided by image guidance, and driven by evidence-based medicine. I hope that these proceedings, as in the past years, provide a viable and contemporary resource that will stimulate further ideas and applications of energy-based tissue treatment and assessment technologies.

Thomas P. Ryan