16 February 2017 Comparing methods for analysis of biomedical hyperspectral image data
Author Affiliations +
Abstract
Over the past 2 decades, hyperspectral imaging technologies have been adapted to address the need for molecule-specific identification in the biomedical imaging field. Applications have ranged from single-cell microscopy to whole-animal in vivo imaging and from basic research to clinical systems. Enabling this growth has been the availability of faster, more effective hyperspectral filtering technologies and more sensitive detectors. Hence, the potential for growth of biomedical hyperspectral imaging is high, and many hyperspectral imaging options are already commercially available. However, despite the growth in hyperspectral technologies for biomedical imaging, little work has been done to aid users of hyperspectral imaging instruments in selecting appropriate analysis algorithms. Here, we present an approach for comparing the effectiveness of spectral analysis algorithms by combining experimental image data with a theoretical “what if” scenario. This approach allows us to quantify several key outcomes that characterize a hyperspectral imaging study: linearity of sensitivity, positive detection cut-off slope, dynamic range, and false positive events. We present results of using this approach for comparing the effectiveness of several common spectral analysis algorithms for detecting weak fluorescent protein emission in the midst of strong tissue autofluorescence. Results indicate that this approach should be applicable to a very wide range of applications, allowing a quantitative assessment of the effectiveness of the combined biology, hardware, and computational analysis for detecting a specific molecular signature.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Silas J. Leavesley, Silas J. Leavesley, Brenner Sweat, Brenner Sweat, Caitlyn Abbott, Caitlyn Abbott, Peter F. Favreau, Peter F. Favreau, Naga S. Annamdevula, Naga S. Annamdevula, Thomas C. Rich, Thomas C. Rich, } "Comparing methods for analysis of biomedical hyperspectral image data", Proc. SPIE 10068, Imaging, Manipulation, and Analysis of Biomolecules, Cells, and Tissues XV, 100680S (16 February 2017); doi: 10.1117/12.2252827; https://doi.org/10.1117/12.2252827
PROCEEDINGS
7 PAGES + PRESENTATION

SHARE
Back to Top