You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 April 2017High-throughput real-time sensing with microfluidic electro-opto-mechanical resonators (Conference Presentation)
Resonant optical sensors have enabled the label-free measurement of nanoparticles suspended in liquids, down to the resolution of individual viruses and large molecules, but are only able to quantify optical properties (refractive index, scattering, fluorescence). Additionally, these sensors are fundamentally limited by the random diffusion of particles to the sensing region, and thus only quantify a tiny fraction of the analyte. We have developed a microfluidic optomechanical resonator capable of sensing flowing nanoparticles using the action of phonons that are coupled to light. The phonon mode of the system casts a nearly perfect net for measuring density, viscoelasticity, and compressibility of the particles that flow through, without being limited by random diffusion. Information on the particle mechanical properties is encoded in the light scattered from the thermal fluctuations of the phonon mode, and measurements at a timescale of below 20 milliseconds have been demonstrated previously. In this work, we develop a new experimental method for improving the signal-to-noise ratio (SNR) and sensing speed achievable with this technique, by implementing electro-opto-mechanical transduction. We demonstrate real-time particle transit measurements as fast as 400 microseconds, a factor of 50x improvement in speed, without any post-processing. We discuss how this novel technique can be used for ultra-high throughput analysis of mechanical properties of biological particles in liquids, enabling a new form of flow cytometry.