You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 February 2017Throughput scaling by spatial beam shaping and dynamic focusing
With availability of high power ultra short pulsed lasers, one prerequisite towards throughput scaling demanded for industrial ultrafast laser processing was recently achieved. We will present different scaling approaches for ultrafast machining, including raster and vector based concepts. The main attention is on beam shaping for enlarged, tailored processed volume per pulse. Some aspects on vector based machining using beam shaping are discussed. With engraving of steel and full thickness modification of transparent materials, two different approaches for throughput scaling by confined interaction volume, avoiding detrimental heat accumulation, are exemplified. In Contrast, welding of transparent materials based on nonlinear absorption benefits from ultra short pulse processing in heat accumulation regime. Results on in-situ stress birefringence microscopy demonstrate the complex interplay of processing parameters on heat accumulation. With respect to process development, the potential of in-in-situ diagnostics, extended to high power ultrafast lasers and diagnostics allowing for multi-scale resolution in space and time is addressed.
The alert did not successfully save. Please try again later.
M. Kumkar, M. Kaiser, J. Kleiner, D. Flamm, D. Grossmann, K. Bergner, F. Zimmermann, S. Nolte, "Throughput scaling by spatial beam shaping and dynamic focusing," Proc. SPIE 10091, Laser Applications in Microelectronic and Optoelectronic Manufacturing (LAMOM) XXII, 100910G (20 February 2017); https://doi.org/10.1117/12.2256228