22 February 2017 Comprehensive analysis of the capillary depth in deep penetration laser welding
Author Affiliations +
Laser welding is the state of the art joining technology regarding productivity and thermal loads and stress on the workpiece. In deep penetration laser welding the quality of the resultant welds strongly depends on the stability of the capillary. The highly dynamic depth fluctuations are of major influence on the controllability of the laser welding process and on the prevention of weld defects. In the present paper the capillary dynamics is investigated by means of time- and spatially resolved in-process X-ray imaging and optical coherence tomography. The X-ray diagnostics allows measuring the geometry of the capillary with frame rates of 1 kHz, while the optical coherence tomography enables the determination of the capillary depth with an acquisition rate of up to 70 kHz. These measurements are correlated to time varying input laser power to provide profound insight in the dynamics of the laser welding process. The measurements are performed for copper, aluminum and mild steel. The capillary depth resulting from arbitrary laser power modulation was investigated. Thereby, the response of the capillary depth to laser power changes was determined. Based on these measurements the changes of the capillary depth in deep penetration laser welding were described by methods known from control theory. These analyses can be utilized to optimize control strategies, to calibrate transient simulations of deep penetration laser welding and to identify the influence of material properties.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Florian Fetzer, Florian Fetzer, Meiko Boley, Meiko Boley, Rudolf Weber, Rudolf Weber, Thomas Graf, Thomas Graf, } "Comprehensive analysis of the capillary depth in deep penetration laser welding", Proc. SPIE 10097, High-Power Laser Materials Processing: Applications, Diagnostics, and Systems VI, 1009709 (22 February 2017); doi: 10.1117/12.2250500; https://doi.org/10.1117/12.2250500

Back to Top