Presentation
19 April 2017 Photon upconversion using InAs-based quantum structures and the control of intermediate states (Conference Presentation)
Itaru Kamiya, David M. Tex, Yuwei Zhang, Yoshihiko Kanemitsu
Author Affiliations +
Abstract
We have reported that a novel quantum structure which we term quantum well island (QWI), a few monolayer thick and sub-micron wide structure, is effective in confining the carriers and enhancing multi-exciton interactions. By embedding InAs-based QWIs in AlGaAs barrier layers, we demonstrated that upconverted photoluminescence (PL) in the visible regime can be obtained by impinging near infrared (IR) photons, which may potentially be applied for intermediate band (IB) solar cells [1]. Further investigation has revealed that the dominant upconversion mechanism is most likely Auger, while two-step excitation may also take place under selected conditions [2]. The upconverted carriers generated by IR irradiation may also be detected as photocurrents. Through a series of studies using this structure, we note the importance of the carrier trapping involved during the upconversion processes. For instance, multiple laser-beam excitation measurements have shown that trapping and re-trapping processes reduce the photocurrents [3]. However, recently, using a structure that consists of InAs quantum dots embedded in InAs/GaAs multi-quantum wells (MQWs), we find that efficient carrier trapping can enhance upconverted PL [4]. We show the preparation and the control of this structure by molecular beam epitaxy (MBE), and the possible mechanisms of the upconversion. We also discuss how the conversion efficiency may be improved using device structures based on this concept. [1] D. M. Tex and I. Kamiya, Phys. Rev. B 83 (2011) 081309. [2] D. M. Tex, I. Kamiya, and Y. Kanemitsu, Sci. Rep. 4 (2014) 4125. [3] D. M. Tex, T. Ihara, I. Kamiya, and Y. Kanemitsu, to be published. [4] Y. Zhang and I. Kamiya, JSAP Spring Meeting, 2016.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Itaru Kamiya, David M. Tex, Yuwei Zhang, and Yoshihiko Kanemitsu "Photon upconversion using InAs-based quantum structures and the control of intermediate states (Conference Presentation)", Proc. SPIE 10099, Physics, Simulation, and Photonic Engineering of Photovoltaic Devices VI, 100990G (19 April 2017); https://doi.org/10.1117/12.2255021
Advertisement
Advertisement
KEYWORDS
Upconversion

Indium arsenide

Luminescence

Molecular beam epitaxy

Near infrared

Quantum dots

Quantum wells

Back to Top