You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
24 February 2017Printing sub-THz wire grid polarizers using a composite liquid metal ink
A low-cost method to ink-jet print terahertz polarizers is presented. A liquid metal printer is used to deliver an eutectic Gallium and Indium alloy (EGaIn24.5) onto polyvinyl chloride film substrates to create flexible wire grid polarizers (10 x 20 mm) in the sub-THz band with a nominal pitch of 200 μm and 300 μm, respectively. A Terahertz Time Domain Spectroscopy (THz-TDS) setup has been used to characterize the polarizers. The experimental results have been compared with FIT (Finite Integration Technique) simulations (CST Studio) showing good agreement. The characterization of the polarizers shows an extinction ratio up to 14 dB in the 0.1-0.7 THz and low loss (<1 dB). A microscopic characterization of the polarizers shows a variance in the line spacing of about 9%. This fabrication method allows a quick and cost-effective approach for the development of sub-THz polarizers to be used in polarization-resolved spectroscopy, polarimetric quality monitoring sensors and the characterization of THz components.
The alert did not successfully save. Please try again later.
Margherita M. P. Colleoni, Qian Wang, Jing Liu, Borja Vidal, "Printing sub-THz wire grid polarizers using a composite liquid metal ink," Proc. SPIE 10103, Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X, 101031T (24 February 2017); https://doi.org/10.1117/12.2251491