You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 February 2017Silicon plasmonic microring modulator using embedded conducting oxides
Silicon photonics offer a promising solution to high speed chip-to-chip interconnects implied by the next generation of computing and communication systems. Electro-optical modulators are the key devices enabling data to be imparted onto an optical carrier wave to propagate in silicon photonic links. Modulators that utilize transparent conducting oxides as the electro-optical active layer in hybrid plasmonic waveguides have recently received a lot of attention. However, no study has considered embedding the conducting oxide in hybrid plasmonic ring and disk structures. In this paper, we propose a novel hybrid plasmonic micro-ring modulator employing an indium-tin-oxide (ITO) layer on silicon-on-insulator (SOI) platform. A pure standard silicon access waveguide is introduced and a detailed discussion of the coupling junction design is presented. Due to its unique electro-optical properties, a unity order change in the refractive index of ITO is attainable and exploited to make a significant shift in the resonance wavelength eliminating the need for high quality factor resonance without sacrificing power consumption. Unlike conventional ring modulators, the proposed modulation mechanism uses the combined effect of changes in both the real and the imaginary parts of the refractive index to control the resonance wavelength and extinction ratio. We comprehensively study the modulator performance and the transmission spectra using FDTD simulations. Optimization of the design leads to a high modulation depth of about 20 dB for an applied voltage of 2V. The design has an estimated total capacitance less than 2 fF.
The alert did not successfully save. Please try again later.
Aya O. Zaki, Khaled A. Kirah, Mohamed A. Swillam, "Silicon plasmonic microring modulator using embedded conducting oxides," Proc. SPIE 10107, Smart Photonic and Optoelectronic Integrated Circuits XIX, 101070O (20 February 2017); https://doi.org/10.1117/12.2253628