You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 February 2017Using quantum-dots to enable deep-UV sensitivity with standard silicon-based imaging detectors
Improving the sensitivity of silicon-based CMOS and CCD in the deep-UV is an area of ongoing interest. Lumogen has been used for this purpose for many years but has several known issues including limitations to its use in both vacuum and radiation harsh environments. Quantum Dots (QD) offers a more robust alternative to Lumogen. The fluorescence wavelength of QDs is tunable and can be fabricated to match the peak sensor quantum efficiency. Aerosol jet printing (AJP) is being used for the deposition of QDs on a variety of substrates and on commercially available sensor arrays. While the films deposited onto various substrates have a surface morphology characterized by aggregate formations, the insight obtained will lead to much more uniform layers in the near future. Organic residues common to this process, that compromise the UV performance, have been minimized.
The alert did not successfully save. Please try again later.
Robert Ichiyama, Zoran Ninkov, Scott Williams, Ross Robinson, Suraj Bhaskaran, "Using quantum-dots to enable deep-UV sensitivity with standard silicon-based imaging detectors," Proc. SPIE 10110, Photonic Instrumentation Engineering IV, 1011011 (20 February 2017); https://doi.org/10.1117/12.2256137