Contents

<table>
<thead>
<tr>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>xiii</td>
</tr>
</tbody>
</table>

KEYNOTE SESSION I

10111 04 A recent review of mid-wavelength infrared type-II superlattices: carrier localization, device performance, and radiation tolerance (Keynote Paper) [10111-123]

QUANTUM CASCADE LASERS FOR GAS SENSING

10111 05 Monitoring of short-lived climate pollutants by laser absorption spectroscopy (Invited Paper) [10111-5]

10111 06 QCL-based trace gas analyzer for industrial and healthcare applications (Invited Paper) [10111-6]

10111 07 Single-tube on beam quartz-enhanced photoacoustic spectrophones exploiting a custom quartz tuning fork operating in the overtone mode [10111-7]

10111 08 CW DFB-QCL and EC-QCL based sensor for simultaneous NO and NO₂ measurements via frequency modulation multiplexing using multi-pass absorption spectroscopy (Invited Paper) [10111-8]

10111 09 Pure amplitude and wavelength modulation spectroscopy for detection of N₂O using a three-section quantum cascade laser (Invited Paper) [10111-9]

SENSING APPLICATION OF QUANTUM CASCADE LASERS

10111 0B Stabilizing infrared quantum cascade laser beams for standoff detection applications [10111-11]

10111 0C Low power consumption quartz-enhanced photoacoustic gas sensor employing a quantum cascade laser in pulsed operation [10111-12]

10111 0D Nanospectroscopy of single purple membranes by mid-IR resonantly-enhanced mechanical photoexpansion [10111-13]

10111 0F Electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers [10111-15]
MID-INFRARED INTERBAND LASERS AND APPLICATIONS

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Invited Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10111 0G</td>
<td>Interband cascade lasers with longer wavelengths</td>
<td>[10111-16]</td>
</tr>
<tr>
<td>10111 0H</td>
<td>Single-frequency infrared tunable lasers with single-angle-facet gain chips for sensing applications</td>
<td>[10111-17]</td>
</tr>
<tr>
<td>10111 0N</td>
<td>Background subtraction in Fourier-domain mobility spectrum analysis for resolving low-mobility carriers</td>
<td>[10111-23]</td>
</tr>
</tbody>
</table>

TERAHERTZ TECHNOLOGY: LASERS, DETECTORS, AND IMAGING

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Invited Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10111 0Q</td>
<td>Sub-wavelength THz resonators for ultra-fast THz detection</td>
<td>[10111-26]</td>
</tr>
<tr>
<td>10111 0R</td>
<td>Spectroscopy and mapping of resonant fields in terahertz plasmonic resonators</td>
<td>[10111-27]</td>
</tr>
</tbody>
</table>

ADVANCES IN PHOTONICS

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Invited Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10111 0X</td>
<td>GaAsP nanowires and nanowire devices grown on silicon substrates</td>
<td>[10111-33]</td>
</tr>
<tr>
<td>10111 0Y</td>
<td>Polarization-free integrated gallium-nitride photonics</td>
<td>[10111-34]</td>
</tr>
<tr>
<td>10111 0Z</td>
<td>Evolution of phase difference and absolute phase of interacting waves under SHG of high intensive femtosecond pulse</td>
<td>[10111-35]</td>
</tr>
</tbody>
</table>

INFRARED DETECTION I

<table>
<thead>
<tr>
<th>Page No.</th>
<th>Title</th>
<th>Invited Paper Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>10111 12</td>
<td>InAs/InAsSb superlattice structure tailored for detection of the full midwave infrared spectral domain</td>
<td>[10111-38]</td>
</tr>
<tr>
<td>10111 13</td>
<td>Long-wavelength interband cascade infrared photodetectors towards high temperature operation</td>
<td>[10111-39]</td>
</tr>
<tr>
<td>10111 14</td>
<td>Extended cut-off wavelength nBn detector utilizing InAsSb/InSb digital alloy absorber</td>
<td>[10111-40]</td>
</tr>
<tr>
<td>10111 15</td>
<td>InGaAs/GaAsSb type-II quantum-well focal plane array with cutoff-wavelength of 2.5 μm</td>
<td>[10111-41]</td>
</tr>
<tr>
<td>10111 16</td>
<td>Type-II InAs/GaSb superlattices for dual color infrared detection</td>
<td>[10111-42]</td>
</tr>
</tbody>
</table>
KEYNOTE SESSION IV

10111 17 Accelerating technology innovations by early understanding of fundamental and technology limitations of material synthesis and device operation (Keynote Paper) [10111-43]

INFRARED DETECTION II

10111 19 HgCdTe APDs for low-photon number IR detection (Invited Paper) [10111-44]
10111 1B Advantages of strained-layer superlattice detectors for high-speed thermal events (Invited Paper) [10111-46]
10111 1C InAs/(GaSb,AlSb) and HgTe/CdTe superlattices: detector materials with topological properties (Invited Paper) [10111-47]
10111 1D MTF and FPN measurements to evaluate midwave infrared T2SL focal plane arrays [10111-48]

QUANTUM DETECTORS

10111 1H Capacitance voltage profiling to determine doping in InAs/GaSb LWIR SL photodetector structures (Invited Paper) [10111-52]
10111 1I Toward a 2D high-performance multi-channel system for time-correlated single-photon counting applications (Invited Paper) [10111-53]

QUANTUM DETECTORS

10111 1I Toward a 2D high-performance multi-channel system for time-correlated single-photon counting applications (Invited Paper) [10111-53]

QUANTUM DETECTORS

10111 1M Second harmonic generation in AlGaAs nanoantennas (Invited Paper) [10111-57]

NANO-PHOTONICS AND PLASMONICS

10111 1O Linear and nonlinear optical behavior of epsilon near zero metamaterials: opportunities and challenges (Invited Paper) [10111-59]
10111 1Q Using plasmon-induced resistance changes in a tunable metal grating for all-electronic readout [10111-61]

NANO-PHOTONICS AND METASURFACES

10111 1X GaAs/AlGaAs waveguiding wavelength conversion devices (Invited Paper) [10111-68]
10111 20 Directional quasi-phase matching AlGaAs waveguide microresonators for efficient generation of quadratic frequency combs [10111-71]
2D MATERIALS FOR PHOTONICS

10111 21 | Nonlinear optics, optomechanics, and antibacterial coating by graphene oxide (Invited Paper) [10111-72]
10111 25 | Low-dimensional materials for optically-assisted microwave applications (Invited Paper) [10111-76]
10111 26 | Current-injection terahertz lasing in a distributed-feedback dual-gate graphene-channel transistor (Invited Paper) [10111-77]

NANO- AND OPTO-MECHANICS

10111 28 | Control of the electromagnetic field in a cavity by an external perturbation (Invited Paper) [10111-79]
10111 2B | Acoustic metamaterials and metasurfaces: a transformative approach for phononic insulators and energy harvesting (Invited Paper) [10111-82]

IR LASER/DETECTOR DEVELOPMENT

10111 2D | High photoresponse in room-temperature quantum cascade detectors based on a coupled-well design [10111-84]
10111 2F | Beam steering in quantum cascade lasers with optical feedback (Invited Paper) [10111-86]
10111 2G | Real-time spectroscopy enabled by external cavity QCLs with MOEMS diffraction gratings [10111-87]
10111 2H | Recent advances on long wave p on n HgCdTe infrared technology (Invited Paper) [10111-88]

KEYNOTE SESSION VIII

10111 2I | Quantum interference in monolithic nanophotonics (Keynote Paper) [10111-89]

FRONTIERS IN QUANTUM TECHNOLOGIES

10111 2K | High absorption efficiency and polarization-insensitivity in superconducting-nanowire single-photon detectors (Invited Paper) [10111-91]
10111 2L | SUPERTWIN: towards 100kpixel CMOS quantum image sensors for quantum optics applications (Invited Paper) [10111-92]
10111 2N | Highly efficient readout integrated circuit for dense arrays of SPAD detectors in time-correlated measurements (Invited Paper) [10111-94]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUANTUM DOTS AND NANOSTRUCTURES I</td>
<td></td>
</tr>
<tr>
<td>10111 2S</td>
<td>Intraband transition in self-doped narrow band gap colloidal quantum dots [10111-100]</td>
</tr>
<tr>
<td>QUANTUM DOTS AND NANOSTRUCTURES II</td>
<td></td>
</tr>
<tr>
<td>10111 2W</td>
<td>Electric and magnetic sensing with NV ensembles in diamonds [10111-103]</td>
</tr>
<tr>
<td>ADVANCED OPTICAL SPECTROSCOPY TECHNIQUES</td>
<td></td>
</tr>
<tr>
<td>10111 2X</td>
<td>Optical parametric sources for gas sensing applications (Invited Paper) [10111-106]</td>
</tr>
<tr>
<td>10111 2Y</td>
<td>Biomedical application of optical fibre sensors (Invited Paper) [10111-107]</td>
</tr>
<tr>
<td>10111 2Z</td>
<td>Hypervelocity time-of-flight characterisation of a 14GS/s histogramming CMOS SPAD sensor (Invited Paper) [10111-108]</td>
</tr>
<tr>
<td>10111 32</td>
<td>Long time ageing tests of DFB ridge laser diodes emitting at 852nm and 894nm for cesium atomic clocks (Invited Paper) [10111-111]</td>
</tr>
<tr>
<td>POSTER SESSION</td>
<td></td>
</tr>
<tr>
<td>10111 33</td>
<td>On the Einstein relation under size quantization in heterostructures semiconductor [10111-112]</td>
</tr>
<tr>
<td>10111 34</td>
<td>A compact mid-infrared dual-gas CH₄/C₂H₆ sensor using a single interband cascade laser and custom electronics [10111-113]</td>
</tr>
<tr>
<td>10111 35</td>
<td>A near-infrared gas sensor system based on tunable laser absorption spectroscopy and its application in CH₄/C₂H₆ detection [10111-114]</td>
</tr>
<tr>
<td>10111 36</td>
<td>Filter-free measurements of black carbon absorption using photoacoustic spectroscopy [10111-115]</td>
</tr>
<tr>
<td>10111 37</td>
<td>Monitoring of nitrous acid (HONO) by external-cavity quantum cascade laser-based off-beam quartz-enhanced photoacoustic spectroscopy (QEPAS) [10111-116]</td>
</tr>
<tr>
<td>10111 38</td>
<td>Detection of prostate specific antigen using silicon photonic crystal nanocavity resonator [10111-117]</td>
</tr>
<tr>
<td>10111 39</td>
<td>A low-temperature photoluminescence study of GaAs₁₋ₓNx/GaAs multiple quantum wells [10111-118]</td>
</tr>
<tr>
<td>10111 3A</td>
<td>Fabrication, characterisation, and epitaxial optimisation of MOVPE-grown resonant tunnelling diode THz emitters [10111-119]</td>
</tr>
<tr>
<td>10111 3B</td>
<td>High contrast grating VCSELs for sensing applications [10111-120]</td>
</tr>
</tbody>
</table>
RGO based nanocomposites with sulphide compounds and their chemical properties
[10111-121]

The study of quantum spectral imaging [10111-122]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aagesen, Martin, 0X
Abergel, J., 19
Acconcia, G., 1I, 2N
Aït-Kaci, H., 1H
Al Abbas, Tarek, 2Z
Aleknavičius, Justinas, 0H
Alghannam, Fahad, 2W
Almer, Oscar, 2Z
Amemiya, Yoshiteru, 3B
Andrulionis, Laurynas, 0H
Angelani, Luca, 21
Aoust, Guillaume, 2X
Appugliese, Felice, 0F
Ariyawansa, Gamini, 04
Armougom, Julie, 2X
Asplund, Carl, 16
Assouar, Badreddine, 2B
Aubin, Herve, 2S
Augustin, Patrick, 05
B., Sundararajan, 15
Baba, Razvan, 3A
Badioli, Michela, 0D, 0F
Bajaj, Jagmohan, 17
Baldassarre, Leonetta, 0D, 0F
Balgarkashi, A., 39
Bayram, C., 0Y
Beanland, Richard, 0X
Beaudoin, G., 0Q
Beck, Douglas H., 2W
Bellotti, Enrico, 17
Berthoz, Jocelyn, 2H
Bessire, Bénz, 2L
Bewley, W. W., 0G
Bhatnagar, A., 3F
Bi, Siwen, 3D
Biagioni, Paolo, 0F
Bidaux, Yves, 09
Bismuto, Alfredo, 09
Biswas, M., 39
Boiko, Dmitri, 2L
Boskovic, D., 2G
Boulade, O., 19
Bozhevvolnyi, Sergey I., 0R
Braidotti, Maria Chiara, 21
Brener, Igal, 0R
Breshke, Christopher J., 0B
Brunner, Alexandre, 2H
Bugli, Francesca, 21
Bulgarini, Gabriele, 2K
Butscek, L., 2G
Cadiou, Erwan, 2X
Caes, Marcel, 1D
Calandri, Eugenio, 0F
Calvani, P., 0D
Canedy, C. L., 0G
Carletti, L., 1M
Carras, Mathieu, 2F
Cartwright, Alexander, 1Q
Cazier, Fabrice, 05
Celebrano, M., 1M
Cerutti, L., 12
Cervera, C., 12
Chakrabarti, Subhananda, 39
Chazelas, J., 25
Chen, Borui, 1Q
Chen, Dong, 05
Chen, Lu, 3D
Chen, Mingrui, 3D
Chen, Weidong, 05, 36, 37
Cheney, Alec, 1Q
Christol, Philippe, 12, 1D, 1H
Ciancico, Carlotta, 21
Ciafoni, Alessandro, 10
Colombelli, R., 0Q
Combré, S., 25
Cominelli, A., 1I, 2N
Conti, Claudio, 21
Costard, Eric, 16, 1D
Costa, Michele, 2B
Cowan, Vincent M., 04
Crozat, P., 0Q
Cruguel, Herve, 2S
Cui, Boya, 0N
Czyszczowski, Tomasz, 3B
Dargent, L., 2H
Davies, G. A., 0Q
De Angelis, C., 1M
De Angelis, Francesco, 0F
De Boni, E., 19
De Rosa, Maurizio, 20
De Rossi, A., 25
De Spilito, Marco, 21
Degiron, A., 0Q
Deguine, Alexandre, 05, 36
Delacourt, B., 12, 19
Dem, Maciej, 3B
Descloux, Delphine, 2X
Dewaele, Dorothee, 05
ix
Conference Committee

Symposium Chairs

Jean-Emmanuel Broquin, IMEP-LAHC (France)
Shibin Jiang, AdValue Photonics, Inc. (United States)

Symposium Co-chairs

Connie J. Chang-Hasnain, University of California, Berkeley (United States)
Graham T. Reed, Optoelectronics Research Centre, University of Southampton (United Kingdom)

Program Track Chair

Ali Adibi, Georgia Institute of Technology (United States)

Conference Chair

Manijeh Razeghi, Northwestern University (United States)

Conference Co-chairs

Gail J. Brown, Air Force Research Laboratory (United States)
Jay S. Lewis, Defense Advanced Research Projects Agency (United States)
Giuseppe Leo, Université Paris 7-Denis Diderot (France)

Conference Program Committee

Badreddine Assouar, Université de Lorraine (France)
Sumith Bandara, U.S. Army Night Vision and Electronic Sensors Directorate (United States)
Steven B. Brown, Space Dynamics Laboratory (United States)
Joshua D. Caldwell, U.S. Naval Research Laboratory (United States)
David A. Cardimona, Air Force Research Laboratory (United States)
Jérôme Faist, ETH Zürich (Switzerland)
Siamak Forouhar, Jet Propulsion Laboratory (United States)
Frédéric Grillot, Télécom ParisTech (France)
Yasar Gurbuz, Sabanci Universitesi (Turkey)
Sven Höfling, University of St. Andrews (United Kingdom)
Jean-Pierre Huignard, Jphopto (France)
Woo-Gwang Jung, Kookmin University (Korea, Republic of)
Tsukuru Katsuyama, Sumitomo Electric Industries, Ltd. (Japan)
Michel Krakowski, Thales Research and Technology (France)
Kwok Keung Law, Naval Air Warfare Center Weapons Division (United States)
Amy W. K. Liu, IQE Inc. (United States)
Jerry R. Meyer, U.S. Naval Research Laboratory (United States)
Maya Mikhailova, Ioffe Physico-Technical Institute (Russian Federation)
Jan Misiewicz, Wroclaw University of Technology (Poland)
Oleg Mitrofanov, University College London (United Kingdom)
Ekmel Òzbay, Bilkent Univeritsei (Turkey)
Shanee Pacley, Air Force Research Laboratory (United States)
Dimitris Pavlidis, Boston University (United States)
Narasimha S. Prasad, NASA Langley Research Center (United States)
John P. Prineas, The University of Iowa (United States)
Edward H. Sargent, University of Toronto (Canada)
Elizabeth H. Steenbergen, Air Force Research Laboratory (United States)
Marija Stojnik Scholl, Centro de Investigaciones en Óptica, A.C. (Mexico)
Meimei Tidrow, U.S. Army Night Vision and Electronic Sensors Directorate (United States)
Miriam Serena Vitiello, Consiglio Nazionale delle Ricerche (Italy)
Rui Q. Yang, The University of Oklahoma (United States)
John M. Zavada, National Science Foundation (United States)

2017 Program Track Chair
Yakov Sidorin, Quarles & Brady LLP (United States)

Session Chairs
1 Keynote Session I
 Manijeh Razeghi, Northwestern University (United States)

2 Quantum Cascade Lasers for Gas Sensing
 Jay S. Lewis, Defense Advanced Research Projects Agency (United States)
 Jerry R. Meyer, U.S. Naval Research Laboratory (United States)

3 Sensing Application of Quantum Cascade Lasers
 Jean-Luc Pelouard, Center for Nanoscience and Nanotechnology (France)
 Gail J. Brown, Air Force Research Laboratory (United States)

4 Mid-Infrared Interband Lasers and Applications
 Gaetano Scamarcio, Università degli Studi di Bari Aldo Moro (Italy)
 Carlo Sirtori, Université Paris 7-Denis Diderot (France)

5 Keynote Session II
 Badreddine Assouar, University de Lorraine (France)
6 Terahertz Technology: Lasers, Detectors, and Imaging
 Jérôme Faist, ETH Zürich (Switzerland)

7 Advances in Photonics
 Gail J. Brown, Air Force Research Laboratory (United States)
 Manijeh Razeghi, Northwestern University (United States)

8 Keynote Session III
 Miriam S. Vitiello, CNR-NANO, NEST (Italy)

9 Infrared Detection I
 Gail J. Brown, Air Force Research Laboratory (United States)

10 Keynote Session IV
 Huiyun Liu, University College London (United Kingdom)

11 Infrared Detection II
 Gail J. Brown, Air Force Research Laboratory (United States)

12 Keynote Session V
 Ashish Jagmohan, IBM Thomas J. Watson Research Center
 (United States)

13 Quantum Detectors
 Philip C. Klipstein, SCD SemiConductor Devices (Israel)

14 Nanophotonics and Plasmonics
 Oleg Mitrofanov, University College London (United Kingdom)
 Mauro Fernandes Pereira, Sheffield Hallam University
 (United Kingdom)

15 Nanophotonics and Metasurfaces
 Ian T. Ferguson, Missouri University of Science and Technology
 (United States)
 Giuseppe Leo, Université Paris 7-Denis Diderot (France)

16 Keynote Session VI
 Anatoly V. Zayats, King's College London (United Kingdom)

17 Nonlinear Photonics
 Andrea Di Falco, University of St. Andrews (United Kingdom)

18 2D Materials for Photonics
 Gail J. Brown, Air Force Research Laboratory (United States)

19 Keynote Session VII
 Gail J. Brown, Air Force Research Laboratory (United States)
20 Nano- and Opto-Mechanics
 Kwok Keung Law, Naval Air Warfare Center Weapons Division (United States)

21 IR Laser/Detector Development
 Gail J. Brown, Air Force Research Laboratory (United States)

22 Keynote Session VIII
 Giuseppe Leo, Université Paris 7-Denis Diderot (France)

23 Frontiers in Quantum Technologies
 Jean-Michel Gérard, Commissariat à l’Énergie Atomique (France)

24 Quantum Dots and Nanostructures I
 Joshua D. Caldwell, U.S. Naval Research Laboratory (United States)

25 Keynote Session IX
 Amr S. Helmy, University of Toronto (Canada)

26 Quantum Dots and Nanostructures II
 Edik U. Rafailov, Aston University (United Kingdom)

27 Advanced Optical Spectroscopy Techniques
 Giuseppe Leo, Université Paris 7-Denis Diderot (France)