You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 January 2017A low-temperature photoluminescence study of GaAs1-xNx/GaAs multiple quantum wells
Five-period GaAs1−xNx/GaAs multiple quantum wells (MQWs) were grown on GaAs(001) substrates under different nitrogen background pressures through solid-source molecular beam epitaxy and the structural and optical properties at low temperature were investigated. High resolution x-ray diffraction revealed sharper satellite peaks observed for GaAs0.978N0.022/GaAs MQWs as compared to GaAs0.982N0.018/GaAs MQWs, indicating better interfaces. The MQWs with higher nitrogen content exhibited high photoluminescence (PL) intensity, whereas a degraded PL intensity was observed for the latter, attributed to reduction in surface recombination with high nitrogen incorporation. Moreover, the spectrum for the MQWs with higher nitrogen content was observed to be consisted of several Gaussian spectra, indicating thickness variation of QWs caused by randomness in distribution of N atoms. In the low energy regime of PL, a long asymmetric tail was observed because of nitrogen introduced potential fluctuations. Rapid thermal annealing enhanced PL intensity by multi-fold and substantially reduced the full width at maximum because of homogenization of MQWs. This investigation could enhance understandings of the MQWs-based optoelectronic devices.
The alert did not successfully save. Please try again later.
M. Biswas, A. Balgarkashi, S. Singh, N. Shinde, R. L. Makkar, A. Bhatnagar, Subhananda Chakrabarti, "A low-temperature photoluminescence study of GaAs1-xNx/GaAs multiple quantum-wells," Proc. SPIE 10111, Quantum Sensing and Nano Electronics and Photonics XIV, 1011139 (27 January 2017); https://doi.org/10.1117/12.2251981