Front Matter: Volume 10120
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510606814

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org

Copyright © 2017, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/17/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE Digital Library
SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>VECTOR POLARIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10120 03</td>
<td>Characterization of the unfolding process of an optical vortex (Invited Paper) [10120-2]</td>
</tr>
<tr>
<td>10120 04</td>
<td>Vortex beams and optical activity of sucrose [10120-3]</td>
</tr>
<tr>
<td>10120 05</td>
<td>Precise transverse alignment of a vectorial optical field generator for complex optical field generation [10120-4]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>OPTICAL VORTEX GENERATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10120 06</td>
<td>Optical vortex generation by use of vector beam recorded azo-dye-doped liquid-crystal polymer composites [10120-5]</td>
</tr>
<tr>
<td>10120 08</td>
<td>Optimizing beams with transverse vortices [10120-7]</td>
</tr>
<tr>
<td>10120 09</td>
<td>Photon sieves for creating and identifying orbital angular momentum of light [10120-8]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>BEAM PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>10120 08</td>
<td>Deducing 3-dimensional polarization fields from projective measurements [10120-10]</td>
</tr>
<tr>
<td>10120 0D</td>
<td>Geometrical interpretation of quantum weak measurement [10120-13]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 4</th>
<th>OPTICAL ANGULAR MOMENTUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>10120 0E</td>
<td>Pulse, polarization and topology shaping of polariton fluids (Invited Paper) [10120-15]</td>
</tr>
<tr>
<td>10120 0F</td>
<td>Parallel transport of fiber mode structure: orbit-orbit interaction [10120-16]</td>
</tr>
<tr>
<td>10120 0G</td>
<td>Vortex-MEMS filters for wavelength-selective orbital-angular-momentum beam generation [10120-17]</td>
</tr>
</tbody>
</table>
SESSION 5 OPTICAL STRUCTURING AND FABRICATION

10120 0J Development and characterization of a microsnap-fit for optical assembly [10120-20]

SESSION 6 CHIRAL INTERACTIONS

10120 0M Searching for the helical-gradient force on chiral molecules [10120-23]
10120 0N Orientated molecular information from chiral rotational spectroscopy [10120-24]

SESSION 7 STRUCTURED BEAMS

10120 0P Exploiting the spatial profiles of light (Invited Paper) [10120-26]
10120 0Q High-order Poincaré sphere with flower modes possessing orbital angular momentum (Invited Paper) [10120-27]
10120 0S Array-specific propagation of flexibly structured ultrashort pulses [10120-29]

SESSION 8 OPTICAL INFORMATION

10120 0V Exploring topological phases in quantum walks of twisted light [10120-32]
10120 0W Measuring the non-separability of optical fields [10120-33]
10120 0X Quantum-key distribution with vector modes [10120-34]

SESSION 9 OPTICAL SINGULARITIES

10120 0Y Single-beam acoustical tweezers (Invited Paper) [10120-35]
10120 0Z A mathematical toolbox for dark ray optics (Invited Paper) [10120-36]
10120 10 Light fields behind microstructures: study of the Babinet-principle in the Fresnel regime [10120-37]

SESSION 10 OPTICAL FORCES

10120 14 Topological dynamics near exceptional points in an optomechanical system [10120-41]
<table>
<thead>
<tr>
<th>SESSION 11</th>
<th>OPTICAL MANIPULATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10120 17</td>
<td>Confining Brownian motion of single nanoparticles in an ABELtrap (Invited Paper) [10120-44]</td>
</tr>
<tr>
<td>10120 18</td>
<td>Optical cell sorting with multiple imaging modalities [10120-45]</td>
</tr>
<tr>
<td>10120 1A</td>
<td>Light robotics: an all-optical nano- and micro-toolbox [10120-47]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTER SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>10120 1B</td>
</tr>
<tr>
<td>10120 1C</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Alfano, Robert R., 04, 0Q, 1B
Andersen, G. P., 09
Anderson, M., 09
Ashrafi, Solyman, 04
Asmolova, 09
Ballarini, Dario, 0E
Banás, Andrew, 18
Banás, Andrew, 1A
Baresch, Diego, 0Y
Barnett, Ethan, 04
Bock, M., 0S
Börsch, Michael, 17
Cameron, Robert P., 0N
Cardano, Filippo, 0Z
Carrussemoux, Caro, 18
Cesar, Julijan, 0G
Chakravarthy, Pradeep T., 0F
Chen, Jian, 05
Chipouline, Arkadi, 0G
Colas, David, 0E
Cuming, M. A., 09
Dagvadorj, 0N
De Giorgi, Milena, 0E
Dienerowitz, Maria, 17
Dominici, Lorenzo, 0E
Donati, Steve, 0E
Dudley, A., 0P
Dutta, Ishir, 0B, 0M
Esen, C., 0J
Ferrando, Albert, 0Z
Forbes, A., 0P, 0W, 0X
Galvez, Enrique J., 0B, 0M, 11
Garcia-March, M. A., 0Z
Gianfrate, Antonio, 0E
Gigli, Giuseppe, 0E
Glückstad, Jesper, 1B, 1A
Götze, Jörg B., 0N
Gottschall, Thomas, 17
Gozali, Richard, 04
Grunwald, R., 0S
Gurbatov, Stanislav O., 0G
Haidar, Mohammad T., 0G
Harris, J. G. E., 14
Heitkamp, Thomas, 17
Hernandez-Aranda, R. I., 0X
Herzig, Hans Peter, 10
Huang, Teng-De, 0Q
Jiang, Luyao, 14
Jones, J. A., 0M
Kawatsuki, Nobuhiro, 06
Khajavi, Behzad, 0M, 11
Kim, Myun-Sik, 10
Köhler, J., 0J
Kong, Lijingjiang, 05
Konrad, T., 0X
Ksouri, S., 0J
Küppers, Franko, 0G
Kuttu, T., 0J
Laussy, Fabrice P., 0E
Limpert, Jens, 17
Lindwasser, Lukas, 1B
Lu, Ting-Hua, 0Q
Lyubopytov, Vladimir S., 0G
Malekzandi, Mohammadreza, 0G
Marchiano, Régis, 0Y
Mason, David, 14
McLaren, M., 0W
Mills, J., 0M
Miyamoto, Yoko, 03
Naik, Dinesh N., 0F
Nape, I., 0X
Nadagao, B., 0W, 0X
Noda, Kohei, 06
Ono, Hiroshi, 06
Ostendorf, A., 0J
Painter, J., 0M
Palma, Darwin, 1B, 1A
Paul, Sujay, 0G
Perez-Garcia, B., 0X
Porfirev, Alexei P., 0G
Preece, Daryl, 0B
Puthankovilakam, Krishnaparvathy, 10
Regan, B., 0M
Rodriguez-Contreras, Adrián, 1B
Rosales-Guzmán, C., 0P, 0W
Roux, F. S., 0X
Rubinsztein-Dunlop, Halina, 0B
Sakamoto, Moritsugu, 06
Samlan, C. T., 0D
Sanchez Muñoz, Carlos, 0E
Sanvitto, Daniele, 0E
Sasaki, Tomoyuki, 06
Scharf, Toralf, 10
Schumann, Martin F., 0G
Shi, Lingyuan, 1B
Smith, Gregory, 1C
Sroor, H., OW
Strange, Paul, 1C
Szymańska, Marzena H., 0E
Thomas, Jean-Louis, 0Y
Tien, Tran Minh, 06
Treffer, A., 0S
Trichilli, A., 0P
Villangca, Mark, 18, 1A
Viswanathan, Nirmal K., 0D, 0F
Voelkel, Reinhard, 10
Vyas, Sunil, 03
Wallrabe, U., 0S
Wan, Chenhao, 05
Wang, Wubao, 1B
Wegener, Martin, 0G
Xu, Haitan, 14
Zhan, Qiwen, 05
Zhang, Lin, 04
Conference Committee

Symposium Chairs

Jean-Emmanuel Broquin, IMEP-LAHC (France)
Shibin Jiang, AdValue Photonics, Inc. (United States)

Symposium Co-chairs

Connie J. Chang-Hasnain, University of California, Berkeley (United States)
Graham T. Reed, Optoelectronics Research Centre, University of Southampton (United Kingdom)

Program Track Chair

David L. Andrews, University of East Anglia (United Kingdom)

Conference Chairs

David L. Andrews, University of East Anglia (United Kingdom)
Enrique J. Galvez, Colgate University (United States)
Jesper Glückstad, Technical University of Denmark (Denmark)

Conference Program Committee

Robert R. Alfano, The City College of New York (United States)
Cornelia Denz, Westfälische Wilhelms-Universität Münster (Germany)
Kishan Dholakia, University of St. Andrews (United Kingdom)
Wolfgang A. Ertmer, Leibniz Universität Hannover (Germany)
Andrew Forbes, University of the Witwatersrand (South Africa) and CSIR National Laser Centre (South Africa)
Jörg B. Götte, Max-Planck-Institut für Physik komplexer Systeme (Germany)
David G. Grier, New York University (United States)
Rüdiger Grunwald, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (Germany)
Simon Hanna, University of Bristol (United Kingdom)
Jandir M. Hickmann, Universidade Federal do Rio Grande do Sul (Brazil)
Lorenzo Marrucci, Università degli Studi di Napoli Federico II (Italy)
Giovanni Milione, NEC Laboratories America, Inc. (United States)
Miles J. Padgett, University of Glasgow (United Kingdom)
Darwin Palima, Technical University of Denmark (Denmark)
Daryl Preece, University of California, San Diego (United States)
Monika Ritsch-Marte, Medizinische Universität Innsbruck (Austria)
Halina H. Rubinsztein-Dunlop, The University of Queensland (Australia)
Marat S. Soskin, Institute of Physics (Ukraine)
Grover A. Swartzlander Jr., Rochester Institute of Technology
(United States)
Nirmal K. Viswanathan, University of Hyderabad (India)

Session Chairs

1 Vector Polarization
David L. Andrews, University of East Anglia (United Kingdom)

2 Optical Vortex Generation
David L. Andrews, University of East Anglia (United Kingdom)

3 Beam Properties
Daryl Preece, University of California, San Diego (United States)

4 Optical Angular Momentum
Enrique J. Galvez, Colgate University (United States)

5 Optical Structuring and Fabrication
Enrique J. Galvez, Colgate University (United States)

6 Chiral Interactions
Albert Ferrando, Universitat de València (Spain)

7 Structured Beams
Jörg B. Götte, University of Glasgow (United Kingdom)

8 Optical Information
Enrique J. Galvez, Colgate University (United States)

9 Optical Singularities
Daryl Preece, University of California, San Diego (United States)

10 Optical Forces
Daryl Preece, University of California, San Diego (United States)

11 Optical Manipulation
David L. Andrews, University of East Anglia (United Kingdom)
Introduction

The areas described in the title of the conference proceedings are, before you pair them together, two of the most rapidly developing topics in modern optics. The links between various forms of structured light and novel forms of optical force represent an obvious and well established area of overlap, yet each field is in its own right experiencing much wider development. Across this whole field, there is closely matched progress in theory, technical methodology and application. As befits the subject area, this itself can be identified as a singular feature. Consider, alone, the angular momentum of light. Who could have guessed that a topic briefly that was addressed in a couple of innocuous-looking pages in Mandel and Wolf’s classic from 1995 would soon proliferate into a subject that is now the focus of conferences across the globe? This year, for example, in addition to the trend-setting annual Complex Light and Optical Forces conference in the United States, major meetings are also scheduled in Canada, Germany, Italy, Japan and Ukraine.

Complex Light and Optical Forces laid down an initial marker for this field; the diversity of techniques continues to grow, whilst fundamental issues in the theory continue to present a significant challenge on several fronts. In this its eleventh consecutive run, this annual conference continues to be the “go-to” forum for reporting the very latest research achievements, with a committed and enthusiastic audience, and presenters who regularly include many of the world’s top researchers. As conference chairs we are delighted and grateful to the authors, old and new, who contributed this year—and especially to those who have provided written or recorded accounts for these proceedings. Amongst the uniformly high standard, several describe features that are entirely new in this field. We thank every member of the program committee for their support. We also acknowledge the unfailingly supportive SPIE staff for assisting the conference organization in every way, and for ensuring speedy and professional processing of these proceedings.

David L. Andrews
Enrique J. Galvez
Jesper Glückstad