Presentation + Paper
3 March 2017 Identifying key radiogenomic associations between DCE-MRI and micro-RNA expressions for breast cancer
Author Affiliations +
Abstract
Understanding the key radiogenomic associations for breast cancer between DCE-MRI and micro-RNA expressions is the foundation for the discovery of radiomic features as biomarkers for assessing tumor progression and prognosis. We conducted a study to analyze the radiogenomic associations for breast cancer using the TCGA-TCIA data set. The core idea that tumor etiology is a function of the behavior of miRNAs is used to build the regression models. The associations based on regression are analyzed for three study outcomes: diagnosis, prognosis, and treatment. The diagnosis group consists of miRNAs associated with clinicopathologic features of breast cancer and significant aberration of expression in breast cancer patients. The prognosis group consists of miRNAs which are closely associated with tumor suppression and regulation of cell proliferation and differentiation. The treatment group consists of miRNAs that contribute significantly to the regulation of metastasis thereby having the potential to be part of therapeutic mechanisms. As a first step, important miRNA expressions were identified and their ability to classify the clinical phenotypes based on the study outcomes was evaluated using the area under the ROC curve (AUC) as a figure-of-merit. The key mapping between the selected miRNAs and radiomic features were determined using least absolute shrinkage and selection operator (LASSO) regression analysis within a two-loop leave-one-out cross-validation strategy. These key associations indicated a number of radiomic features from DCE-MRI to be potential biomarkers for the three study outcomes.
Conference Presentation
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ravi K. Samala, Heang-Ping Chan, Lubomir Hadjiiski, Mark A. Helvie, and Renaid Kim "Identifying key radiogenomic associations between DCE-MRI and micro-RNA expressions for breast cancer", Proc. SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis, 101340T (3 March 2017); https://doi.org/10.1117/12.2255512
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Tumors

Breast cancer

Magnetic resonance imaging

Data archive systems

Image segmentation

Receptors

Tumor growth modeling

Back to Top