In this paper, we propose a novel supervoxel segmentation method designed for mediastinal lymph node by embedding Hessian-based feature extraction. Starting from a popular supervoxel segmentation method, SLIC, which computes supervoxels by minimising differences of intensity and distance, we overcome this method's limitation of merging neighboring regions with similar intensity by introducing Hessian-based feature analysis into the supervoxel formation. We call this structure-oriented voxel clustering, which allows more accurate division into distinct regions having blob-, line- or sheet-like structures. This way, different tissue types in chest CT volumes can be segmented individually, even if neighboring tissues have similar intensity or are of non- spherical extent. We demonstrate the performance of the Hessian-assisted supervoxel technique by applying it to mediastinal lymph node detection in 47 chest CT volumes, resulting in false positive reductions from lymph node candidate regions. 89 % of lymph nodes whose short axis is at least 10 mm could be detected with 5.9 false positives per case using our method, compared to our previous method having 83 % of detection rate with 6.4 false positives per case.
|