Translator Disclaimer
3 March 2017 Automated detection of nerve fiber layer defects on retinal fundus images using fully convolutional network for early diagnosis of glaucoma
Author Affiliations +
Early detection of glaucoma is important to slow down progression of the disease and to prevent total vision loss. We have been studying an automated scheme for detection of a retinal nerve fiber layer defect (NFLD), which is one of the earliest signs of glaucoma on retinal fundus images. In our previous study, we proposed a multi-step detection scheme which consists of Gabor filtering, clustering and adaptive thresholding. The problems of the previous method were that the number of false positives (FPs) was still large and that the method included too many rules. In attempt to solve these problems, we investigated the end-to-end learning system without pre-specified features. A deep convolutional neural network (DCNN) with deconvolutional layers was trained to detect NFLD regions. In this preliminary investigation, we investigated effective ways of preparing the input images and compared the detection results. The optimal result was then compared with the result obtained by the previous method. DCNN training was carried out using original images of abnormal cases, original images of both normal and abnormal cases, ellipse-based polar transformed images, and transformed half images. The result showed that use of both normal and abnormal cases increased the sensitivity as well as the number of FPs. Although NFLDs are visualized with the highest contrast in green plane, the use of color images provided higher sensitivity than the use of green image only. The free response receiver operating characteristic curve using the transformed color images, which was the best among seven different sets studied, was comparable to that of the previous method. Use of DCNN has a potential to improve the generalizability of automated detection method of NFLDs and may be useful in assisting glaucoma diagnosis on retinal fundus images.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ryusuke Watanabe, Chisako Muramatsu, Kyoko Ishida, Akira Sawada, Yuji Hatanaka, Tetsuya Yamamoto, and Hiroshi Fujita "Automated detection of nerve fiber layer defects on retinal fundus images using fully convolutional network for early diagnosis of glaucoma", Proc. SPIE 10134, Medical Imaging 2017: Computer-Aided Diagnosis, 1013438 (3 March 2017);

Back to Top