Translator Disclaimer
24 March 2017 Neuroelectronic device process development and challenge
Author Affiliations +
We investigated the fabrication of small neuroelectronic device consisting of four shanks with 16 electrodes per shank for simultaneous neurochemical and brain activity monitoring. The 16 electrodes on each shank have a separation distance of 100 microns (μm). Each shank has a width of 40 μm with separation distance of 7750 μm. This design eliminates single-site recording with limited individual conductors and permits rapid characterization of multiple neurons simultaneously at multiple brain depth/sites, consequently providing ground-breaking capabilities for parsing neurochemical release and brain activity. The device is fabricated on (100) silicon substrate and is fully integrated with electrode, interconnect and bond pad fabricated on one chip. Gold rectangular pyramid electrodes are selected as the recording electrodes to enhance the non-invasiveness associated with heating and minimizing surrounding biological tissue damage. The gold electrodes are deposited on the etched silicon substrate with 600 nanometer (nm) low temperature oxide (LTO) sacrificial layer. Each electrode has top area of 6 μm x 60 μm and depth of 750 μm. The interconnects provide electrical connection between electrodes and bond pads and are sandwiched between thin polyimide layers to prevent them from breaking while maintaining the flexibility. Final bond pads and electrodes are all passivated with polyimide to provide mechanical support. Upon device release, the recording electrodes are exposed to directly contact brain structure, and the exposed bond pads are soldered on the circuit board to transport signals to the measurement instrument. The entire process involves five photomasks. Process development and integration challenges will be reviewed and discussed in the paper.
© (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Gymama Slaughter, Matthew Robinson, Joel Tyson, and Chen J. Zhang "Neuroelectronic device process development and challenge", Proc. SPIE 10147, Optical Microlithography XXX, 101470W (24 March 2017);

Back to Top